Mathematical models in morphogenesis

  • Philip K. Maini
Part of the Lecture Notes in Mathematics book series (LNM, volume 1714)


Hopf Bifurcation Spiral Wave Flux Boundary Condition Pigmentation Pattern Finite Dimensional Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Bard, A model for generating aspects of zebra and other mammalian coat patterns, J. theor. Biol., 93, 363–385 (1981)MathSciNetCrossRefGoogle Scholar
  2. J. Bard and I. Lauder, How well does Turing's theory of morphogenesis work? J. theor. Biol., 45, 501–531 (1974)CrossRefGoogle Scholar
  3. D.L. Benson, J.A. Sherratt and P.K. Maini, Diffusion driven instability in an inhomogeneous domain, Bull. Math. Biol., 55, 365–384 (1993)CrossRefzbMATHGoogle Scholar
  4. D.L. Benson, P.K. Maini and J.A. Sherratt, Unravelling the Turing bifurcation using spatially varying diffusion coefficients, J. Math. Biol., (1998) (to appear)Google Scholar
  5. N. F. Britton, Reaction-Diffusion Equations and Their Applications to Biology, Academic Press, London, 1986zbMATHGoogle Scholar
  6. F. Brümmer, G. Zempel, P. Buhle, J.-C. Stein and D. F. Hulser, Retinoic acid modulates gap junction permeability: A comparative study of dye spreading and ionic coupling in cultured cells, Exp. Cell. Res., 196, 158–163 (1991)CrossRefGoogle Scholar
  7. V. Castets, E. Dulos, J. Boissonade and P. De Kepper, Experimental evidence of a sustained Turing-type equilibrium chemical pattern, Phys. Rev. Lett., 64(3), 2953–2956 (1990)CrossRefGoogle Scholar
  8. S. Childress and J.K. Percus, Nonlinear aspects of chemotaxis, Math. Biosciences, 56, 217–237 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. G.C. Cruywagen, P.K. Maini and J.D. Murray, Sequential pattern formation in a model for skin morphogenesis IMA J. Math. Appl. Med. & Biol., 9, 227–248 (1992)CrossRefzbMATHGoogle Scholar
  10. G.C. Cruywagen and J.D. Murray, On a tissue interaction model for skin pattern formation, J. Nonlinear Sci., 2, 217–240 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. G. Dee and J.S. Langer, Propagating pattern selection, Phys. Rev. Letts. 50(6), 383–386 (1983)CrossRefGoogle Scholar
  12. P. De Kepper, V. Castets, E. Dulos and J. Boissonade, Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction, Physica D, 49, 161–169 (1991)CrossRefGoogle Scholar
  13. R. Dillon, P.K. Maini and H.G. Othmer, Pattern formation in generalised Turing systems: I. Steady-state patterns in systems with mixed boundary conditions, J. Math. Biol., 32, 345–393 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. E. Doedel, AUTO: Software for continuation and bifurcation problems in ordinary differential equations. Technical Report, Cal. Tech., 1986Google Scholar
  15. B. Ermentrout, Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square, Proc. Roy. Soc. Lond., A434, 413–417 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. P. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lect. Notes in Biomath., 28, Springer-Verlag, Berlin, Heidelberg, New York, 1979.zbMATHGoogle Scholar
  17. R.M. Ford, and D.A. Lauffenburger, Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients, Bull. Math. Biol., 53, 721–749 (1991)CrossRefzbMATHGoogle Scholar
  18. A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12, 30–39 (1972)CrossRefzbMATHGoogle Scholar
  19. A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The molecular bases of periodic and chaotic behaviour, Cambridge University Press (1996)Google Scholar
  20. P. Grindrod, The Theory of Applications of Reaction-Diffusion Equations: Pattern and Waves, Oxford University Press, 1996Google Scholar
  21. P. Grindrod, J.D. Murray and S. Sinha, Steady-state spatial patterns in a cell-chemotaxis model, IMA J. Appl. Math. Med. & Biol., 6, 69–79 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  22. B.R. Johnson and S.K. Scott, New approaches to chemical patterns, Chem. Soc. Rev., 265–273 (1996)Google Scholar
  23. E.F. Keller and L.A. Segel, Travelling bands of bacteria: a theoretical analysis, J. theor. Biol., 30, 235–248 (1971)CrossRefzbMATHGoogle Scholar
  24. L. Landau and E. Lipshitz, Theory of Elasticity, 2nd edn., New York, Pergamon, 1970Google Scholar
  25. I.R. Lapidus and R. Schiller, A model for the chemotactic response of a bacterial population, Biophys. J., 16, 779–789 (1976)CrossRefGoogle Scholar
  26. I. Lengyel and I.R. Epstein, Modeling of Turing structures in the chlorite-iodidemalonic acid-starch reaction system, Science, 251, 650–652 (1991)CrossRefGoogle Scholar
  27. P.K. Maini, D.L. Benson and J.A. Sherratt, Pattern formation in reaction diffusion models with spatially inhomogeneous diffusion coefficients, IMA J. Math. Appl. Med. & Biol. 9, 197–213 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  28. P.K. Maini, M.R. Myerscough, K.H. Winters and J.D. Murray, Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern formation, Bull. Math. Biol., 53, 701–719 (1991)CrossRefzbMATHGoogle Scholar
  29. P.K. Maini, K.J. Painter and H. Chau, Spatial pattern formation in chemical and biological systems, Faraday Transactions, 93, 3601–3610 (1997)CrossRefGoogle Scholar
  30. P.K. Maini and M. Solursh, Cellular mechanisms of pattern formation in the developing limb, Int. Rev. Cytology, 129, 91–133 (1991)CrossRefGoogle Scholar
  31. S.C. Müller, T. Plesser and B. Hess, The structure of the core of the spiral wave in the Belousov-Zhabotinskii reaction, Science, 230, 661–663 (1985)CrossRefGoogle Scholar
  32. J.D. Murray, Parameter space for Turing instability in reaction diffusion mechanisms: a comparison of models, J. theor. Biol., 98, 143–163 (1982)MathSciNetCrossRefGoogle Scholar
  33. J.D. Murray, Asymptotic Analysis, 2nd edn., Berlin Heidelberg New York Tokyo, Springer (1984)CrossRefzbMATHGoogle Scholar
  34. J.D. Murray, Mathematical Biology, 2nd edn., Berlin, Heidelberg, New York, London. Paris, Tokyo, Springer-Verlag (1993)CrossRefzbMATHGoogle Scholar
  35. J.D. Murray, D.C. Deeming and M.W.J. Ferguson, Size dependent pigmentation pattern formation in embryos of Alligator mississippiensis: time of initiation of pattern generation mechanism, Proc. Roy. Soc. Lond., B239, 279–293 (1990)CrossRefGoogle Scholar
  36. J.D. Murray and M.R. Myerscough, Pigmentation pattern formation of snakes, J. theor. Biol., 149, 339–360 (1991)CrossRefGoogle Scholar
  37. M.R. Myerscough, P.K. Maini and K.J. Painter, Pattern formation in a generalised chemotactic model, Bull. Math., Biol., (1997) (to appear)Google Scholar
  38. M.R. Myerscough and J.D. Murray, Analysis of propagating pattern in a chemotaxis system, Bull. Math. Biol., 54, 77–94 (1992)CrossRefzbMATHGoogle Scholar
  39. G.A. Ngwa and P.K. Maini, Spatio-temporal patterns in a mechanical model for mesenchymal morphogenesis, J. Math. Biol., 33, 489–520 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  40. H.G. Othmer and A. Stevens, Aggregation, Blow-up and Collapse: The ABCs of taxis inreinforced random walks, SIAM J. Appl. Math. (to appear)Google Scholar
  41. Q. Ouyang, R. Li, G. Li and H.L. Swinney, Dependence of Turing pattern wavelength on diffusion rate. J. Chem. Phys., 102(6), 2551–2555 (1995)CrossRefGoogle Scholar
  42. G.F. Oster, J.D. Murray and A.K. Harris, Mechanical aspects of mesenchymal morphogenesis, J. Embryol. exp. Morph., 78, 83–125 (1983).zbMATHGoogle Scholar
  43. G.F. Oster, N. Shubin, J.D. Murray and P. Alberch, Evolution and morphogenetic rules. The shape of the vertebrate limb in ontogeny and phylogeny, Evolution, 45, 862–884 (1988)CrossRefGoogle Scholar
  44. K.J. Painter, P.K. Maini and H.G. Othmer, Spatial pattern formation in coupled cell-chemotactic-reaction-diffusion systems (in prep.)Google Scholar
  45. A.V. Panfilov and A.V. Holden (eds), Computational Biology of the Heart, John Wiley & Sons (1997)Google Scholar
  46. A.S. Perelson, P.K. Maini, J.D. Murray, J.M. Hyman and G.F. Oster, Nonlinear pattern selection in a mechanical model for morphogenesis, J. Math. Biol., 24, 525–541 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  47. D.H. Sattinger, Six lectures on the transition to instability, in Lecture Notes in Mathematics, 322, Berlin, Springer-Verlag (1972)Google Scholar
  48. J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, J. theor. Biol., 81, 389–400 (1979)MathSciNetCrossRefGoogle Scholar
  49. D. Thomas, Artifical enzyme membranes, transport, memory and oscillatory phenomena, in Analysis and Control of Immobilized Enzyme Systems, ed. D. Thomas and J.-P. Kernevez, Springer, Berlin, Heidelberg, New York, 115–150 (1975)Google Scholar
  50. A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. Lond, B327, 37–72 (1952)CrossRefGoogle Scholar
  51. B.J. Welsh, J. Gomatam and A.E. Burgess, Three-dimensional chemical waves in the Belousov-Zhabotinskii reaction, Nature, 340, 611–614 (1983)CrossRefGoogle Scholar
  52. A. T. Winfree, Spiral waves of chemical activity, Science, 175, 634–636 (1972)CrossRefGoogle Scholar
  53. A. T. Winfree, Rotating chemical reactions, Sci. Amer., 230 (6), 82–95 (1974)CrossRefGoogle Scholar
  54. L. Wolpert, Positional information and the spatial pattern of cellular differentiation, J. theor. Biol., 25, 1–47 (1969)CrossRefGoogle Scholar
  55. L. Wolpert and A. Hornbruch, Double anterior chick limb buds and models for cartilage rudiment specification, Development, 109, 961–966 (1990)Google Scholar
  56. A.N. Zaikin and A.M. Zhabotinskii, Concentration wave propagation in two-dimensional liquid-phase self-organising system, Nature, 225, 535–537 (1970)CrossRefGoogle Scholar
  57. V.S. Zykov, Simulation of Wave Processes in Excitable Media, Manchester University Press (1987)Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Philip K. Maini
    • 1
  1. 1.Centre for Mathematical BiologyMathematical InstituteOxfordEngland

Personalised recommendations