p-Adic estimates for exponential sums

  • Alan Adolphson
  • Steven Sperber
Part of the Lecture Notes in Mathematics book series (LNM, volume 1454)


Nonnegative Integer Nonnegative Real Number Laurent Polynomial Newton Polygon Newton Polyhedron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Adolphson and S. Sperber: Twisted Kloosterman sums and p-adic Bessel functions, II: Newton polygons and analytic continuation. Amer. J. Math. 109, 723–764 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Adolphson and S. Sperber: Newton polyhedra and the degree of the L-function associated to an exponential sum. Invent. Math. 88, 555–569 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Adolphson and S. Sperber: p-Adic estimates for exponential sums and the theorem of Chevalley-Warning. Ann. Scient. E. N. S. 20, 545–556 (1987)MathSciNetzbMATHGoogle Scholar
  4. [4]
    A. Adolphson and S. Sperber: Exponential sums and Newton polyhedra: Cohomology and estimates. Ann. of Math. 130, 367–406 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Adolphson and S. Sperber: On twisted exponential sums (preprint)Google Scholar
  6. [6]
    J. Ax: Zeroes of polynomials over finite fields. Amer. J. Math. 86, 255–261 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Carpentier: Sommes exponentielles dont la géométrie est tres belle: p-adic estimates. Pac. J. Math. 141, 229–277 (1990)MathSciNetCrossRefGoogle Scholar
  8. [8]
    B. Dwork: On the zeta function of a hypersurface, II. Ann. of Math. 80, 227–299 (1964)MathSciNetCrossRefGoogle Scholar
  9. [9]
    N. Katz: On a theorem of Ax. Amer. J. Math. 93, 485–499 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. G. Kouchnirenko: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S. Sperber: On the p-adic theory of exponential sums. Amer. J. Math. 108, 255–296 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D. Wan: An elementary proof of a theorem of Katz. Amer. J. Math. 111, 1–8 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    E. Warning: Bemerkung zur vorstehenden Arbeit von Herr Chevalley. Abh. Math. Sem. Univ. Hamburg 11, 76–83 (1936)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Alan Adolphson
    • 1
  • Steven Sperber
    • 2
  1. 1.Department of MathematicsOklahoma State UniversityStillwaterUSA
  2. 2.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations