The convergence behaviour of preconditioned CG and CG-S in the presence of rounding errors

  • H. A. Van der Vorst
Submitted Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1457)


Incomplete Choleski decompositions and modified versions thereof are quite effective preconditioners for the conjugate gradients method. It is explained why Modified Incomplete Choleski may lead to more iteration steps, in some cases, whereas it should theoretically be more effective than standard Incomplete Choleski. It is also shown, by carefully analyzing a numerical example, why the convergence behaviour of Conjugate Gradients-Squared can be, sometimes unacceptable, irregular.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ashcraft, C., Grimes, R., On vectorizing incomplete factorizations and SSOR preconditioners, SIAM J.Sci.Statist.Comput., 9, 122–151, 1988MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Axelsson, O., Solution of linear systems of equations: iterative metods, in Barker, V.A. (ed.), Sparse Matrix Techniques, Copenhagen, August 9–12, 1976, Lecture Notes in Mathematics 572, Springer Verlag, Berlin, 1977CrossRefGoogle Scholar
  3. [3]
    Axelsson, O., Lindskog, G., On the eigenvalue distribution of a class of preconditioning methods, Numer.Math., 48, 479–498, 1986.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Concus, P., Golub, G.H., O'Leary, D.P., A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations, in: Sparse Matrix Computations (J.R. Bunch and D.J. Rose, eds), pp.309–332, Academic Press, New York, 1976Google Scholar
  5. [5]
    Fletcher, R., Conjugate gradient methods for indefinite systems, Lecture Notes Math. 506, pp. 73–89, Springer-Verlag, Berlin, etc., 1976MATHGoogle Scholar
  6. [6]
    Golub, G.H., Van Loan, C.F., Matrix Computations, North Oxford Academic, Oxford, 1983MATHGoogle Scholar
  7. [7]
    Gustafsson, I., A class of 1:st order factorization methods, BIT, 18, 142–156, 1978MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Hestenes, M., Stiefel, E., Methods of conjugate gradients for solving linear systems, J.Research NBS, 49, 409–436, 1952MathSciNetMATHGoogle Scholar
  9. [9]
    Kaasschieter, E.F., The solution of non-symmetric linear systems by bi-conjugate gradients or conjugate gradients squared, Delft University of Technology, Faculty of Mathematics and Informatics, Report 86-21, 1986Google Scholar
  10. [10]
    Meijerink, J.A., Van der Vorst, H.A., An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math.of Comp., 31, 148–162, 1977MathSciNetMATHGoogle Scholar
  11. [11]
    Paige, C.C., The computation of Eigenvalues and Eigenvectors of Verg Large Sparse Matrices, Ph.D.thesis, Univ. of London, 1971Google Scholar
  12. [12]
    Parlett, B.N., The symmetric eigenvalue problem, Prentice Hall, Englewood Cliffs, 1980MATHGoogle Scholar
  13. [13]
    Parlett, B.N., Misconvergence in the Lanczos algorithm, Department of Mathematics, Univ.of California at Berkeley, Report PAM-404, 1987Google Scholar
  14. [14]
    Sonneveld, P., CGS: a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.Sci.Statist.Comput., 10, 36–52, 1989MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Van der Sluis, A., Van der Vorst, H.A., The rate of convergence of conjugate gradients, Numer.Math., 48, 543–560, 1986MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Van der Sluis, A., Van der Vorst, H.A., The convergence behavior of Ritz values in the presence of close eigenvalues, Lin.Alg.& its Appl, 88/89, 651–694, 1987MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Van der Vorst, H.A., Preconditioning by incomplete decompositions, Ph.D.Thesis, Univ. of Utrecht, 1982Google Scholar
  18. [18]
    Van der Vorst, H.A., High performance preconditioning, SIAM J.Sci. Statist. Comput., 10, 1174–1185, 1989MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • H. A. Van der Vorst
    • 1
  1. 1.Delft University of TechnologyDelftthe Netherlands

Personalised recommendations