Simple lie groups and the legendre symbol

  • V. G. Kac
Lie Algebras
Part of the Lecture Notes in Mathematics book series (LNM, volume 848)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Chapter 10, §5, Academic Press, 1978.Google Scholar
  2. [2]
    V.G. Kac, "Infinite-dimensional algebras ... and the very strange formula", Advances in Math., 30(1978), 85–136.CrossRefMATHGoogle Scholar
  3. [3]
    V.G. Kac, D.H. Peterson, "Infinite-dimensional Lie algebras, classical theta functions and modular forms", to appear.Google Scholar
  4. [4]
    B. Kostant, "On Macdonald's n-function formula ...," Advances in Math. 20(1976), 179–212.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    I.G. Macdonald, "Affine root systems and Dedekind's η-function", Invent. Math. 15(1972), 91–143.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J.-P. Serre, "Arithmetic Groups, in Homological Group Theory", London Math. Soc. 36(1979), Cambridge University Press, Cambridge, England.Google Scholar
  7. [7]
    J.-P. Serre, "Cours d'arithmetique", Paris, 1970.Google Scholar
  8. [8]
    R. Steinberg, "Regular elements of semisimple algebraic groups", Publ. Math. IHES No. 25(1965), 281–312.Google Scholar
  9. [9]
    R. P. Stanley, "Theory and application of plane partitions I", Stud. in Appl. Math. L,2, 167–188.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • V. G. Kac
    • 1
  1. 1.Massechusetts Institute of TechnologyCambridge

Personalised recommendations