Simple lie groups and the legendre symbol

  • V. G. Kac
Lie Algebras
Part of the Lecture Notes in Mathematics book series (LNM, volume 848)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Chapter 10, §5, Academic Press, 1978.Google Scholar
  2. [2]
    V.G. Kac, "Infinite-dimensional algebras ... and the very strange formula", Advances in Math., 30(1978), 85–136.CrossRefMATHGoogle Scholar
  3. [3]
    V.G. Kac, D.H. Peterson, "Infinite-dimensional Lie algebras, classical theta functions and modular forms", to appear.Google Scholar
  4. [4]
    B. Kostant, "On Macdonald's n-function formula ...," Advances in Math. 20(1976), 179–212.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    I.G. Macdonald, "Affine root systems and Dedekind's η-function", Invent. Math. 15(1972), 91–143.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J.-P. Serre, "Arithmetic Groups, in Homological Group Theory", London Math. Soc. 36(1979), Cambridge University Press, Cambridge, England.Google Scholar
  7. [7]
    J.-P. Serre, "Cours d'arithmetique", Paris, 1970.Google Scholar
  8. [8]
    R. Steinberg, "Regular elements of semisimple algebraic groups", Publ. Math. IHES No. 25(1965), 281–312.Google Scholar
  9. [9]
    R. P. Stanley, "Theory and application of plane partitions I", Stud. in Appl. Math. L,2, 167–188.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • V. G. Kac
    • 1
  1. 1.Massechusetts Institute of TechnologyCambridge

Personalised recommendations