Advertisement

Decomposable extensions of affine groups

  • Hans-Jürgen Schneider
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 795)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    V.A. Abraškin, 2-divisible groups over ℤ, Mat. Zametki 19 (1976), 717–726; english translation in Math. Notes 19 (1976).MathSciNetzbMATHGoogle Scholar
  2. 2.
    M. Demazure and P. Gabriel, Groupes Algébriques, Masson, Paris, 1970.zbMATHGoogle Scholar
  3. 3.
    V.K.A.M. Gugenheim, On extensions of algebras, co-algebras and Hopf algebras I, Amer. J. of Math. 84 (1962), 349–382.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    U. Oberst, Affine Quotientenschemata nach affinen, algebraischen Gruppen und induzierte Darstellungen, J. Algebra 44 (1977), 503–538.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    D.E. Radford, Freeness (projectivity) criteria for Hopf algebras over Hopf subalgebras, J. Pure Appl. Algebra 11 (1977), 15–28.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    H.-J. Schneider, Endliche algebraische Gruppen, Algebra-Berichte Nr. 19 (1974), Uni-Druck München.Google Scholar
  7. 7.
    H.-J. Schneider, Zerlegbare Untergruppen affiner Gruppen, to appear.Google Scholar
  8. 8.
    H.-J. Schneider, Zerlegbare Erweiterungen affiner Gruppen, to appear.Google Scholar
  9. 9.
    H.-J. Schneider, Restriktion und Corestriktion für algebraische Gruppen, to appear.Google Scholar
  10. 10.
    M.E. Sweedler, Cohomology of algebras over Hopf algebras, Trans. Amer. Math. Society 133 (1968), 205–239.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Takeuchi, A note on geometrically reductive groups, J. Fac. Sci. Univ. Tokyo 20 (1973), 387–396.MathSciNetzbMATHGoogle Scholar
  12. 12.
    M. Takeuchi, Commutative Hopf algebras are projective over Hopf subalgebras, preprint 1978.Google Scholar
  13. 13.
    J. Tate, p-divisible groups, Proceedings Conference on local fields, Springer, New York, Berlin, 1967, 158–183.CrossRefGoogle Scholar
  14. 14.
    J. Tate and F. Oort, Group schemes of prime order, Ann. Scient. Ec. Norm. Sup. 3 (1970), 1–21.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Hans-Jürgen Schneider
    • 1
  1. 1.Mathematisches InstitutUniversität MünchenMünchen 2

Personalised recommendations