La correspondance de Robinson

  • M.-P. Schützenberger
Algèbre Des Tableaux De Young
Part of the Lecture Notes in Mathematics book series (LNM, volume 579)


Point Minimum Young Tableau Sont Identiquement Nous Appellerons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.C. Aitken, The monomial expansion of determinental Symmetric Functions, Proc. Royal Soc. Edinburgh A 61 (1943), 300–310.MathSciNetzbMATHGoogle Scholar
  2. [2]
    E.A. Bender and D.E. Knuth, Enumeration of plane partitions, J. Combinatorial Theory (A) 13 (1972), 40–54.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    W.H. Burge, Four correspondences between graphs and generalized Young tableaux, J. Combinatorial Theory (A) 17 (1974), 12–30.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H.O. Foulkes, A survey of some combinatorial aspects of symmetric functions, in Permutations, A. Lentin, édit., Paris, Gauthier-Villars, 1974, 79–92.Google Scholar
  5. [5]
    C. Greene, An extension of Schensted's theorem, Advances in Math. 14 (1974), 254–265.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    C. Greene, Some partitions associated with a partially ordered set, J. Combinatorial Theory 20 (1976), 69–79.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    C. Greene and D. Kleitman, The structure of Sperner k-families, J. Combinatorial Theory 20 (1976), 41–68.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D.E. Knuth, Permutation matrices and generalised Young Tableaux, Pacific J. Math. 34 (1970), 709–727.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    D.E. Knuth, The art of computer programming, Vol. 3, Addison Wesley, 1973.Google Scholar
  10. [10]
    A. Lascoux, Calcul de Schur et extensions grassmanniennes des λ-anneaux, ce volume.Google Scholar
  11. [11]
    D.E. Littlewood, The theory of group characters, 2nd Edition, Oxford, 1950.Google Scholar
  12. [12]
    G. de B. Robinson, On the representations of the symmetric group, American J. Math 60 (1938), 746–760.MathSciNetGoogle Scholar
  13. [13]
    G.C. Rota, P. Doubilet et J. Stein, On the foundations of combinatorial theory IX. Studies in Applied Math. 53 (1974), 185–218.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    C. Schensted, Longest increasing and decreasing subsequences, Canadian J. Math. 13 (1961), 179–191.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M.-P. Schützenberger, Quelques remarques sur une construction de Schensted, Math. Scand. 12 (1963), 117–128.MathSciNetzbMATHGoogle Scholar
  16. [16]
    M.-P. Schützenberger, Sur un théorème de G. de B. Robinson, C.R.Acad. Sci. Paris 272 (1971), 420–421.MathSciNetzbMATHGoogle Scholar
  17. [17]
    R.P. Stanley, Theory and application of plane partition, Studies in Applied Math. 1 (1971), 167–188 and 259–279.CrossRefzbMATHGoogle Scholar
  18. [18]
    G.P. Thomas, Baxter algebras and Schur functions. Ph. D. Thesis, Univ. of Wales, Swansea, 1974.Google Scholar
  19. [19]
    G.P. Thomas, Frames, Young Tableaux, and Baxter Sequences, Advances in Math. (to appear).Google Scholar
  20. [20]
    G. Viennot, Une forme géométrique de la correspondance de Robinson-Schensted, ce volume.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • M.-P. Schützenberger
    • 1
  1. 1.ParisFrance

Personalised recommendations