Highest weight modules for semisimple Lie algebras

  • James E. Humphreys
Part of the Lecture Notes in Mathematics book series (LNM, volume 831)


Weight Module Discrete Series Composition Factor Verma Module Bruhat Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. N. Bernštein, I. M. Gelfand, S. I. Gelfand, The structure of representations generated by vectors of highest weight, Functional Anal. Appl. 5 (1971), 1–9.MathSciNetCrossRefGoogle Scholar
  2. 2.
    _____, Differential operators on the base affine space and a study of g-modules, pp. 21–64, Lie Groups and their Representations, Halsted, New York, 1975.zbMATHGoogle Scholar
  3. 3.
    _____, A category of g-modules, Functional Anal. Appl. 10 (1976), 87–92.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    P. Delorme, Extensions dans la categorie 0 de Bernštein-Gelfand-Gelfand, Applications. (preprint).Google Scholar
  5. 5.
    V. V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), 187–198.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    _____, On a construction of representations and a problem of Enright (preprint).Google Scholar
  7. 7.
    J. Dixmier, Algèbres Enveloppantes, Gauthier-Villars, Paris, 1974; English translation, North-Holland, Amsterdam, 1977.Google Scholar
  8. 8.
    T. J. Enright, On the algebraic construction and classification of Harish-Chandra modules, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 1063–1065.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    _____, On the fundamental series of a real semisimple Lie algebra: their irreducibility, resolutions and multiplicity formulae, Ann. of Math. 110 (1979), 1–82.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    _____, The representations of complex semisimple Lie groups (preprint).Google Scholar
  11. 11.
    T. J. Enright, V. S. Varadarajan, On an infinitesimal characterization of the discrete series, Ann. of Math. 102 (1975), 1–15.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    H. Garland, J. Lepowsky, Lie algebra homology and the Macdonald-Kac formulas, Invent. Math. 34 (1976), 37–76.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    H. Hecht, W. Schmid, A proof of Blattner's conjecture, Invent. Math. 31 (1975), 129–154.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. E. Humphreys, Finite and infinite dimensional modules for semisimple Lie algebras, pp. 1–64, Queen's Papers in Pure & Appl. Math. No. 48, Kingston, Ont., 1978.Google Scholar
  15. 15.
    J. C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren, Math. Ann. 226 (1977), 53–65.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    _____, Moduln mit einem höchsten Gewicht, Habilitationsschrift, U. Bonn, 1977, to appear in Lect. Notes in Math.750, Springer, 1979.Google Scholar
  17. 17.
    A. Joseph, Dixmier's problem for Verma and principal series submodules, J. London Math. Soc. 20(1979), 193–204.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    J. Lepowsky, A generalization of the Bernštein-Gelfand-Gelfand resolution, J. Algebra 49 (1977), 496–511.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A. Rocha-Caridi, Splitting criteria for g-modules induced from a parabolic and the Bernštein-Gelfand-Gelfand resolution of a finite dimensional, irreducible g-module, Trans. Amer. Math. Soc., to appear.Google Scholar
  21. 21.
    N. N. Šapovalov, On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funkcional. Analiz. i Priložen, 6, no. 4 (1972), 65–70 = Functional Anal. Appl. 6 (1972), 307–312.MathSciNetGoogle Scholar
  22. 22.
    V. S. Varadarajan, Infinitesimal theory of representations of semisimple Lie groups, lectures given at NATO Advanced Study Institute, Liège, 1977.Google Scholar
  23. 23.
    D. A. Vogan, Irreducible characters of semisimple Lie groups II Duke Math. J. 46(1979), 805–859.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    N. R. Wallach, On the Enright-Varadarajan modules: A construction of the discrete series, Ann. Sci. École Norm Sup. (4) 9 (1976), 81–102.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • James E. Humphreys
    • 1
  1. 1.University of MassachusettsAmherst

Personalised recommendations