Advertisement

Morse theory and the yang-mills equations

  • Raoul Bott
Part II Proceedings Of The Conference Held At Salamanca September 10 – 14, 1979 Edited By P.L. García And A. Pérez-Rendón Chapter I. Gauge Theories
Part of the Lecture Notes in Mathematics book series (LNM, volume 836)

Keywords

Modulus Space Vector Bundle Morse Theory Compact Riemann Surface Stable Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. of Math. vol. 80 (1968), pp. 964–1029.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    G. Harder, Eine Bemerkung zu einer Arbeit von P.E. Newstead, Jour.für Math. 242 (1970), 16–25.MathSciNetzbMATHGoogle Scholar
  3. 3.
    G. Harder and M.S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles over curves, Math. Ann. 212 (1975), 215–248.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D. Mumford and P.E. Newstead, Periods of a moduli space of bundles on curves, Amer. J. Math. 90 (1968), 1201–1208.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    M.S. Narasimhan and S. Ramanan, Moduli of vector bundles on a compact Riemann surface, Ann. of Math. 89 (1969), 19–51.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M.S. Narasimhan and S. Ramanan, Vector bundles on curves, Proceedings of the Bombay Colloquium of Algebraic Geometry, 335–346, Oxford University Press, 1969.Google Scholar
  7. 7.
    M.S. Narasimhan and C.S. Seshadri, Stable and Unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540–576.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    P.E. Newstead, Topological properties of some spaces of stable bundles, Topology 6 (1967), 241–262.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    _____, Stable bundles of rank 2 and odd degree over a curve of genus 2, Topology 7 (1968), 205–215.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    _____, Characteristic classes of stable bundles of rank 2 over an algebraic curve, Trans. Amer. Math. Soc. 169(1972), 337–345.MathSciNetzbMATHGoogle Scholar
  11. 11.
    _____, Rationality of moduli spaces of stable bundles, to appear.Google Scholar
  12. 12.
    C.S. Seshadri, Space of unitary vector bundles on a compact Riemann surface, Ann. of Math. 85 (1967), 303–336.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Raoul Bott
    • 1
  1. 1.University of HarvardUSA

Personalised recommendations