Advertisement

On higher p-adic regulators

  • Christophe Soulé
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 854)

Keywords

Exact Sequence Finite Group Zeta Function Number Field Projective Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bayer, P., Neukirch J.: On values of zeta functions and l-adic Euler characteristics. Inv. Math., 50, 1978, pp. 35–64.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Bloch S.: Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, preprint.Google Scholar
  3. [3]
    Borel A.: Stable real cohomology of arithmetic groups. Ann. Scient. Ec. Norm. Sup., 4ième série, 7, 1974, pp. 235–272.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Brumer A.: On the units of algebraic number fields, Mathematika, 14, 1967, pp.121–124.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Coates J.: On the values of the p-adic zeta functions at the odd positive integers. Unpublished.Google Scholar
  6. [6]
    Coates J., Lichtenbaum S: On l-adic zeta functions. Ann. of Maths., 98, 1973, pp.498–550.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Coleman B.: P-adic analogues of the multi-logarithms. PreprintGoogle Scholar
  8. [8]
    Gillard R.: Unités cyclotomiques, unités semi-locales et ℤl-extensions II, Ann. Inst. Fourier, Grenoble, 29, 1979, pp. 1–15.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Iwasawa K.: On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan 16, 1, 1964, pp.42–82.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Iwasawa K.: On ℤl-extensions of algebraic number fields, Ann. of Math. 98, 1973, pp. 246–326.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Lang S.: Cyclotomic fields I, Graduate Texts in Maths., 59, 1978; Berlin-Heidelberg-New York. Springer-Verlag.CrossRefzbMATHGoogle Scholar
  12. [12]
    S. Lichtenbaum: On the values of zeta and L-functions I, Ann. of Maths., 96, 1972, pp. 338–360.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Loday J.-L.: K-théorie et représentations de groupes. Ann. Scient. Ec. Norm. Sup., 4ième série, 9, 1976, pp. 309–377.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Quillen D.: Finite generation of the groups Ki of rings of algebraic integers. Lec. Notes in Maths. no 341, 1973, pp. 179–210. Berlin-Heidelberg-New York. Springer-Verlag.Google Scholar
  15. [15]
    Schneider P.: Über gewisse Galoiscohomologiegruppen. Math. Zeitschrift, 168, 1979, pp. 181–205.CrossRefzbMATHGoogle Scholar
  16. [16]
    Serre J.-P.: Cohomologie galoisiemne. Lec. Notes in Maths. no 5, 1964. Berlin-Heidelberg-New York. Springer-Verlag.Google Scholar
  17. [17]
    Soulé C.: K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Inv. Math., 55, 1979, pp. 251–295.CrossRefzbMATHGoogle Scholar
  18. [18]
    Tate J.: Relations between K2 and Galois cohomology. Inv. Math., 36, 1976, pp. 257–274.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Tate J.: On the torsion in K2 of fields, in Algebraic Number Theory symposium, Kyoto, 1977, pp. 243–261. S. Iyanaga Ed.Google Scholar
  20. [20]
    Wagoner J. B.: Continuous cohomology and p-adic K-theory. Lec. Notes in Maths. 551, 1976, pp. 241–248. Berlin-Heidelberg-New York. Springer Verlag.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Christophe Soulé
    • 1
  1. 1.C.N.R.S.Paris VII

Personalised recommendations