Algebraic K-Theory Evanston 1980 pp 372-401 | Cite as
On higher p-adic regulators
Conference paper
First Online:
Keywords
Exact Sequence Finite Group Zeta Function Number Field Projective Limit
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]Bayer, P., Neukirch J.: On values of zeta functions and l-adic Euler characteristics. Inv. Math., 50, 1978, pp. 35–64.MathSciNetCrossRefzbMATHGoogle Scholar
- [2]Bloch S.: Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, preprint.Google Scholar
- [3]Borel A.: Stable real cohomology of arithmetic groups. Ann. Scient. Ec. Norm. Sup., 4ième série, 7, 1974, pp. 235–272.MathSciNetzbMATHGoogle Scholar
- [4]Brumer A.: On the units of algebraic number fields, Mathematika, 14, 1967, pp.121–124.MathSciNetCrossRefzbMATHGoogle Scholar
- [5]Coates J.: On the values of the p-adic zeta functions at the odd positive integers. Unpublished.Google Scholar
- [6]Coates J., Lichtenbaum S: On l-adic zeta functions. Ann. of Maths., 98, 1973, pp.498–550.MathSciNetCrossRefzbMATHGoogle Scholar
- [7]Coleman B.: P-adic analogues of the multi-logarithms. PreprintGoogle Scholar
- [8]Gillard R.: Unités cyclotomiques, unités semi-locales et ℤl-extensions II, Ann. Inst. Fourier, Grenoble, 29, 1979, pp. 1–15.MathSciNetCrossRefzbMATHGoogle Scholar
- [9]Iwasawa K.: On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan 16, 1, 1964, pp.42–82.MathSciNetCrossRefzbMATHGoogle Scholar
- [10]Iwasawa K.: On ℤl-extensions of algebraic number fields, Ann. of Math. 98, 1973, pp. 246–326.MathSciNetCrossRefzbMATHGoogle Scholar
- [11]Lang S.: Cyclotomic fields I, Graduate Texts in Maths., 59, 1978; Berlin-Heidelberg-New York. Springer-Verlag.CrossRefzbMATHGoogle Scholar
- [12]S. Lichtenbaum: On the values of zeta and L-functions I, Ann. of Maths., 96, 1972, pp. 338–360.MathSciNetCrossRefzbMATHGoogle Scholar
- [13]Loday J.-L.: K-théorie et représentations de groupes. Ann. Scient. Ec. Norm. Sup., 4ième série, 9, 1976, pp. 309–377.MathSciNetzbMATHGoogle Scholar
- [14]Quillen D.: Finite generation of the groups Ki of rings of algebraic integers. Lec. Notes in Maths. no 341, 1973, pp. 179–210. Berlin-Heidelberg-New York. Springer-Verlag.Google Scholar
- [15]Schneider P.: Über gewisse Galoiscohomologiegruppen. Math. Zeitschrift, 168, 1979, pp. 181–205.CrossRefzbMATHGoogle Scholar
- [16]Serre J.-P.: Cohomologie galoisiemne. Lec. Notes in Maths. no 5, 1964. Berlin-Heidelberg-New York. Springer-Verlag.Google Scholar
- [17]Soulé C.: K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Inv. Math., 55, 1979, pp. 251–295.CrossRefzbMATHGoogle Scholar
- [18]Tate J.: Relations between K2 and Galois cohomology. Inv. Math., 36, 1976, pp. 257–274.MathSciNetCrossRefzbMATHGoogle Scholar
- [19]Tate J.: On the torsion in K2 of fields, in Algebraic Number Theory symposium, Kyoto, 1977, pp. 243–261. S. Iyanaga Ed.Google Scholar
- [20]Wagoner J. B.: Continuous cohomology and p-adic K-theory. Lec. Notes in Maths. 551, 1976, pp. 241–248. Berlin-Heidelberg-New York. Springer Verlag.zbMATHGoogle Scholar
Copyright information
© Springer-Verlag 1981