Une remarque sur un théorème de Bourgain

  • Dominique Schneider
  • Michel Weber
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1557)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [B]
    Bourgain, J.Almost sure convergence and bounded entropy. Israël J. of Math., V. 63, p. 79–87, (1988).MathSciNetCrossRefMATHGoogle Scholar
  2. [Du]
    Dudley, R.M.The size of compact subsets in Hilbert spaces and continuity of Gaussian processes. J. Functional analysis, V1, p. 290–330 (1967).Google Scholar
  3. [F]
    Fernique, X.Gaussian Random Vectors and their reproducing Kernel Hilbert spaces. Tech. rep. no 34, Univ. of Ottawa, (1985).Google Scholar
  4. [H]
    Halàsz, K.Remarks on the remainder in Birkhoff's ergodic theorem. Acta Math. Acad. Sci Hungar. 28, p. 389–395, (1978).CrossRefMATHGoogle Scholar
  5. [K]
    Krengel, U.Ergodic theorems. W. de Gruyter, studies in Mathematics 6, (1985).Google Scholar
  6. [LW]
    Ladouceur, S., Weber, M.Speed of convergence of the mean average operator for quasi-compact operators, preprint, (1991).Google Scholar
  7. [Sa]
    Sawyer, S.Maximal inequalities of weak type. Ann. Math., V. 84, p. 157–174, (1966).MathSciNetCrossRefMATHGoogle Scholar
  8. [St]
    Stein, E.M.On limits of sequences of operators. Ann. Math. V. 74, p. 140–170, (1961).CrossRefMATHGoogle Scholar
  9. [Su]
    Sudakov, V.N.Gaussian random processes and measures of solid angles in Hilbert spaces. Dokl. Akad. Nauk. S.S.S.R. V. 197, p. 43–45, (1971).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Dominique Schneider
    • 1
  • Michel Weber
    • 1
  1. 1.Institut de Recherche Mathématique AvancéeUniversité Louis Pasteur et C.N.R.S.Strasbourg Cedex

Personalised recommendations