On Thurston's formulation and proof of Andreev's theorem

  • Al Marden
  • Burt Rodin
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1435)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.M. Andreev, On convex polyhedra in Lobacevskii spaces, Math. USSR Sb. 10 (1970), 413–440.CrossRefGoogle Scholar
  2. [2]
    E.M. Andreev, On convex polyhedra of finite volume in Lobacevskii space, Mat. Sb., Nor. Ser. 83 (1970), 256–260 (Russian); Math. USSR, Sb. 12 (1970), 255–259 (English).MathSciNetGoogle Scholar
  3. [3]
    B. Rodin, D. Sullivan, The convergence of circle packings to the Riemann mapping, J. Diff. Geom. 26 (1987), 349–360.MathSciNetMATHGoogle Scholar
  4. [4]
    W.P. Thurston, The Geometry and Topology of 3-manifolds, Princeton University Notes, Princeton, New Jersey, 1980.Google Scholar
  5. [5]
    W.P. Thurston, The finite Riemann mapping theorem, invited address, International Symposium in Celebration of the Proof of the Bieberbach Conjecture. Purdue University, March 1985.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Al Marden
    • 1
  • Burt Rodin
    • 2
  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.University of CaliforniaSan Diego La JollaUSA

Personalised recommendations