On Thurston's formulation and proof of Andreev's theorem

  • Al Marden
  • Burt Rodin
Part of the Lecture Notes in Mathematics book series (LNM, volume 1435)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.M. Andreev, On convex polyhedra in Lobacevskii spaces, Math. USSR Sb. 10 (1970), 413–440.CrossRefGoogle Scholar
  2. [2]
    E.M. Andreev, On convex polyhedra of finite volume in Lobacevskii space, Mat. Sb., Nor. Ser. 83 (1970), 256–260 (Russian); Math. USSR, Sb. 12 (1970), 255–259 (English).MathSciNetGoogle Scholar
  3. [3]
    B. Rodin, D. Sullivan, The convergence of circle packings to the Riemann mapping, J. Diff. Geom. 26 (1987), 349–360.MathSciNetMATHGoogle Scholar
  4. [4]
    W.P. Thurston, The Geometry and Topology of 3-manifolds, Princeton University Notes, Princeton, New Jersey, 1980.Google Scholar
  5. [5]
    W.P. Thurston, The finite Riemann mapping theorem, invited address, International Symposium in Celebration of the Proof of the Bieberbach Conjecture. Purdue University, March 1985.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Al Marden
    • 1
  • Burt Rodin
    • 2
  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.University of CaliforniaSan Diego La JollaUSA

Personalised recommendations