The nilpotent Lie group Gd+2 and a class of differential operators with multiple characteristics

  • Jiang Yaping 
  • Luo Xuebo 
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1494)

References

  1. [1]
    G. B. Folland and E. M. Stein, Estimates for the \(\bar \partial \) b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    L. Corwin and L. Rothschild, Necessary conditions for local solvability of homogeneous left invariant differential operators on nilpotent Lie groups, Acta Math. 147 (1981), 265–288.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    D. Geller, Local solvability and homogeneous distributions on the Heisenberg group, Comm. P.D.E. 5 (1980), 475–560.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    R. Beals, Analysis on the Heisenberg group, Preprint.Google Scholar
  5. [5]
    M. E. Taylor, Noncommutative microlocal analysis, Part I, Memoirs Amer. Math. Soci. No. 313 (1984).Google Scholar
  6. [6]
    —, Noncommutative harmonic analysis, Amer. Soci. Monographs, no. 22 (1986).Google Scholar
  7. [7]
    L. Rothschild and E. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247–320.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Luo Xuebo, On the supplemental operators and the hypoelliptic differential operators of subprincipal type, J. Lanzhou Univ. Natural sci. IV, 1981.Google Scholar
  9. [9]
    — and Fu Chuli, A class of hypoelliptic differential operators not of principal type, Acta Math. Sinica 28 (1985), no. 2, 233–243.MathSciNetMATHGoogle Scholar
  10. [10]
    T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1984.Google Scholar
  11. [11]
    L. Hörmander, The analysis of linear partial differential operators III, Springer-Verlag, 1983.Google Scholar
  12. [12]
    Li Zhibin and Luo Xuebo, A singularity analysis about the fundamental solution of the wave operator on the Heisenberg group, Math. Appl. Vol.2, no.3 (1989), 87–89.MathSciNetMATHGoogle Scholar
  13. [13]
    Fu Chuli and Luo Xuebo, The hypoellipticity and local solvability for a class of invariant (pseudo) differential operators on the nilpotent Lie groups H nR k, to appear.Google Scholar
  14. [14]
    An Youshan and Luo Xuebo, A fundamental solution for the operator ℒα on the Heisenberg group H n, Ke Xue Tong Bo 11 (China), 1989.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Jiang Yaping 
    • 1
  • Luo Xuebo 
    • 1
  1. 1.Lanzhou UniversityChina

Personalised recommendations