Minimal C*-dense ideals and algebraically irreducible representations of the schwartz-algebra of a nilpotent lie group

  • Jean Ludwig
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1359)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Boidol, H. Leptin, J. Schürmann, D. Vahle, Räume primitiver Ideale in Gruppenalgebren, Math. Ann. 236 (1978), 1–13.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    I.D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. Ec. Norm. Sup. 6 Sér. 4 (1973), 407–411.MathSciNetMATHGoogle Scholar
  3. 3.
    J. Dixmier, Opérateurs de rang fini dans les représentations unitaires, Publ. Math. IHES 6 (1960), 305–317.MathSciNetMATHGoogle Scholar
  4. 4.
    J. Dixmier, Les C*-Algèbres et leurs représentations, Gauthier-Villars.Google Scholar
  5. 5.
    J. Dixmier, P. Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2) 102 (1978), 305–330.MathSciNetMATHGoogle Scholar
  6. 6.
    F. Du Cloux, Représentations temperées des groupes de Lie nilpotents, Preprint (1987).Google Scholar
  7. 7.
    F. Du Cloux, Jets de fonctions différentiables sur le dual d'un groupe de Lie nilpotent, Invent. Math. 88 (1987), 375–394.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    F.F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag, Berlin-Heidelberg-New York (1973).MATHCrossRefGoogle Scholar
  9. 9.
    R. Howe, On a connection between nilpotent groups and oscillatory integrals associated to singularities, Pac. J. Math. 73 (1977), n. 2, 329–363.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups. Stud. Math. 78 (1974), 253–266.MathSciNetMATHGoogle Scholar
  11. 11.
    N. Jacobson, Structure of rings, third edition, Amer. Math. Soc. Coll. Publ. 37 (Providence 1968).Google Scholar
  12. 12.
    A.A. Kirillov, Unitary representations of nilpotent Lie groups, Usp. Mat. Nauk 17 (1962), 57–110.MathSciNetMATHGoogle Scholar
  13. 13.
    J. Ludwig, On primary ideals in the group algebra of a nilpotent Lie group, Math. Ann. 262 (1983), 287–304.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    J. Ludwig, A class of symmetric and a class of Wiener group algebras, J. Funct. Annal. 31, (1979), 187–194.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    J. Ludwig, The element of bounded trace in the C*-algebra of a nilpotent Lie group, Invent. math. 83 (1986), 167–190.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    T. Pytlik, On the spectral radius of elements in groups algebras, Bull. Acad. Polon. Sci. 21 (1973), 899–902.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Jean Ludwig
    • 1
  1. 1.Séminaire de MathématiqueCentre UniversitaireLuxembourg

Personalised recommendations