On DG-modules over the de rham complex and the vanishing cycles functor

  • M. M. Kapranov
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1479)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angeniol B.,Lejeune-Jalabert M.Le theoreme de Riemann-Roch singulier pour les D-modules holonomes.-Asterisque,1985,N 130,p.130–160.Google Scholar
  2. 2.
    Arnold V.I.,Vartchnko A.N.,Gusein-zadet S.M.Singularities of differentiable maps.Part 2.-Moscow,1984 (in Russian).Google Scholar
  3. 3.
    Deligne P.Les constantes des equations fonctionelles des fonctions L.-IHES preprint,1980.Google Scholar
  4. 4.
    Bernstein I.N.,Gelfand I.M.,Gelfand S.I.Algebraic vector bundles on pn and problems of linear algebra.-Funkcionalnyi analiz i ego pril.,1978,v.12,N.3,p.66–67 (in Russian).MathSciNetMATHGoogle Scholar
  5. 5.
    Deligne P.Le formalisme des cycles evanescents.-Lect.Notes in Math.,1973,N.340.Google Scholar
  6. 6.
    Kashiwara M.Vanishing cycles and holonomic systems.-Lect.Notes inMath.,1983,N.1016,p.134–142.Google Scholar
  7. 7.
    Kashiwara M.,Shapira P.Microlocal study of sheaves.-Asterisque,1985,N.128.Google Scholar
  8. 8.
    Laumon G.Sur la categorie derivee filtree des D-modules coherents.-Lect.Notes in Math,1983,N.1016,p.151–237.Google Scholar
  9. 9.
    Saito M.Modules de Hodge polarisables.-preprimt RIMS,Kyoto univ.,1986,N.553.Google Scholar
  10. 10.
    Ginsburg V.Characteristic varieties and vanishing cycles.-Invent.Math.,1986,v.84,p.327–402.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Priddy S.Koszul complexes.-Trans.Amer.Math.Soc., 1970,v.152,N.1,p.39–60.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Beilinson A.A.,Ginsburg V.Mixed categories,Ext-duality and representations.-preprint,Stockholm univ.,1987.Google Scholar
  13. 13.
    Kapranov M.M.On the derived category and the K-functor of coherent sheaves on intersections of quadrics.-USSR Math Izvestija,1988,v.52,N.1 (in Russian)Google Scholar
  14. 14.
    Houzel C.,Shapira P.Images directes des modules differentiels.-comptes rendus,1984,t.298,N.18,p.461–464.MathSciNetMATHGoogle Scholar
  15. 15.
    Eilenberg S.,Moore C.Limits and spectral sequences.-Topology,1962,v.1,N.1,p.1–23.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Herrera M.,Lieberman C.Duality and the de Rham cohomology of infinitesimal neighborhoods.-Invent.Math.,1971,v.13,p.97–124.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Beilinson A.A.On the derived category of perverse sheaves.-Lect.Notes in Math.,1987,N.1289,p.27–41.Google Scholar
  18. 18.
    Witten E.Supersymmetry and Morse inequalities.-J.Diff.Geometry,1982,v.17,p.661–692.MATHGoogle Scholar
  19. 19.
    Novikov S.P.Bloch homology.Critical points of functions and 1-forms.-USSR Math.Doklady,1986,v.287,N.6,p.1321–1324 (in Russian).MathSciNetGoogle Scholar
  20. 20.
    Pazhitnov A.V.An analytic proof of the real parts of Novikov's inequalities.-USSR Math.Doklady,1987,v.293,N.6,p.1305, 1307 (in Rissian).MathSciNetMATHGoogle Scholar
  21. 21.
    Knudsen F.F., Mumford D. The projectivity of the moduli space of stable curves I.-Math.scand.,1976,v.39,N.1,p.19–55.MathSciNetMATHGoogle Scholar
  22. 22.
    Laurent Y.calcul d'indices et irregularite pour les systemes holonomes.-Asterisque,1985,N.130,p.352–364.Google Scholar
  23. 23.
    Goresky M.,McPherson R.Stratified Morse theoru.-Springer,1988.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • M. M. Kapranov

There are no affiliations available

Personalised recommendations