On DG-modules over the de rham complex and the vanishing cycles functor

  • M. M. Kapranov
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1479)


  1. 1.
    Angeniol B.,Lejeune-Jalabert M.Le theoreme de Riemann-Roch singulier pour les D-modules holonomes.-Asterisque,1985,N 130,p.130–160.Google Scholar
  2. 2.
    Arnold V.I.,Vartchnko A.N.,Gusein-zadet S.M.Singularities of differentiable maps.Part 2.-Moscow,1984 (in Russian).Google Scholar
  3. 3.
    Deligne P.Les constantes des equations fonctionelles des fonctions L.-IHES preprint,1980.Google Scholar
  4. 4.
    Bernstein I.N.,Gelfand I.M.,Gelfand S.I.Algebraic vector bundles on pn and problems of linear algebra.-Funkcionalnyi analiz i ego pril.,1978,v.12,N.3,p.66–67 (in Russian).MathSciNetMATHGoogle Scholar
  5. 5.
    Deligne P.Le formalisme des cycles evanescents.-Lect.Notes in Math.,1973,N.340.Google Scholar
  6. 6.
    Kashiwara M.Vanishing cycles and holonomic systems.-Lect.Notes inMath.,1983,N.1016,p.134–142.Google Scholar
  7. 7.
    Kashiwara M.,Shapira P.Microlocal study of sheaves.-Asterisque,1985,N.128.Google Scholar
  8. 8.
    Laumon G.Sur la categorie derivee filtree des D-modules coherents.-Lect.Notes in Math,1983,N.1016,p.151–237.Google Scholar
  9. 9.
    Saito M.Modules de Hodge polarisables.-preprimt RIMS,Kyoto univ.,1986,N.553.Google Scholar
  10. 10.
    Ginsburg V.Characteristic varieties and vanishing cycles.-Invent.Math.,1986,v.84,p.327–402.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Priddy S.Koszul complexes.-Trans.Amer.Math.Soc., 1970,v.152,N.1,p.39–60.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Beilinson A.A.,Ginsburg V.Mixed categories,Ext-duality and representations.-preprint,Stockholm univ.,1987.Google Scholar
  13. 13.
    Kapranov M.M.On the derived category and the K-functor of coherent sheaves on intersections of quadrics.-USSR Math Izvestija,1988,v.52,N.1 (in Russian)Google Scholar
  14. 14.
    Houzel C.,Shapira P.Images directes des modules differentiels.-comptes rendus,1984,t.298,N.18,p.461–464.MathSciNetMATHGoogle Scholar
  15. 15.
    Eilenberg S.,Moore C.Limits and spectral sequences.-Topology,1962,v.1,N.1,p.1–23.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Herrera M.,Lieberman C.Duality and the de Rham cohomology of infinitesimal neighborhoods.-Invent.Math.,1971,v.13,p.97–124.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Beilinson A.A.On the derived category of perverse sheaves.-Lect.Notes in Math.,1987,N.1289,p.27–41.Google Scholar
  18. 18.
    Witten E.Supersymmetry and Morse inequalities.-J.Diff.Geometry,1982,v.17,p.661–692.MATHGoogle Scholar
  19. 19.
    Novikov S.P.Bloch homology.Critical points of functions and 1-forms.-USSR Math.Doklady,1986,v.287,N.6,p.1321–1324 (in Russian).MathSciNetGoogle Scholar
  20. 20.
    Pazhitnov A.V.An analytic proof of the real parts of Novikov's inequalities.-USSR Math.Doklady,1987,v.293,N.6,p.1305, 1307 (in Rissian).MathSciNetMATHGoogle Scholar
  21. 21.
    Knudsen F.F., Mumford D. The projectivity of the moduli space of stable curves I.-Math.scand.,1976,v.39,N.1,p.19–55.MathSciNetMATHGoogle Scholar
  22. 22.
    Laurent Y.calcul d'indices et irregularite pour les systemes holonomes.-Asterisque,1985,N.130,p.352–364.Google Scholar
  23. 23.
    Goresky M.,McPherson R.Stratified Morse theoru.-Springer,1988.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • M. M. Kapranov

There are no affiliations available

Personalised recommendations