Asymptotic expansions for a flow with a dynamic contact angle

  • Dietmar Kröner
Free Boundary Problems For Navier-Stokes Equations
Part of the Lecture Notes in Mathematics book series (LNM, volume 1431)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADN.
    Agmon, S., Douglis, A., Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I., Comm. Pure Appl. Math. XII (1959), 623–727.MathSciNetCrossRefMATHGoogle Scholar
  2. BE.
    Bemelmans, J., Gleichgewichtsfiguren zäher Flüssigkeiten mit Oberflächenspannung, Analysis 1 (1981), 241–282.MathSciNetCrossRefMATHGoogle Scholar
  3. CU1.
    Cuvelier, C., A capillary free boundary problem governed by the Navier-Stokes equations, Comp. Math. Appl. Mech. Eng. 48 (1985), 45–80.MathSciNetCrossRefMATHGoogle Scholar
  4. CU2.
    Cuvelier, C., On the solution of capillary free boundary problems governed by the Navier-Stokes equations, preprint.Google Scholar
  5. DD.
    Dussan V., Dussan E.B., Davis, S.H., On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech. 65 (1974), 71–95.CrossRefMATHGoogle Scholar
  6. FI.
    Finn, R., Equilibrium capillary surfaces, Grundlehren d. mathem. Wissenschaften, Berlin, Heidelberg, New York, Tokyo (1986).CrossRefMATHGoogle Scholar
  7. FS1.
    Finn, R., Shinbrot, M., The capillary contact angle, I: The horizontal plane and stick-slip motion, Preprint.Google Scholar
  8. FS2.
    Finn,R., Shinbrot, M., The capillary contact angle, II: The inclined plane, Preprint.Google Scholar
  9. HS.
    Huh, C., Scriven, L.E., Hydrodynamic model of steady movement of a solid / liquid / fluid contact line, J. Colloid and Interface Science (1971), 35–101.Google Scholar
  10. KO.
    Kondratev, V.A., Boundary problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc. 16 (1967), 227–313.MathSciNetGoogle Scholar
  11. KR.
    Kröner, D., Asymptotische Entwicklungen für Strömungen von Flüssigkeiten mit freiem Rand und dynamischem Kontaktwinkel, Preprint 809, SFB 72, Bonn. 1986.Google Scholar
  12. MP.
    Maz'ja, V.G., Plamenevskii, V.A., A problem on the motion of a fluid with a free surface in a container with piecewise smooth walls, Sov. Math. Dokl. 21 (1980), 317–219.Google Scholar
  13. MPS.
    Maz'ja, V.G., Plamenevskii, B.A., Stupyalis, L.I., The three-dimensional problem of steady-state motion of a fluid with a free surface, Amer. Math. Soc. Transl. 123 (1984), 171–268.CrossRefGoogle Scholar
  14. PS.
    Pukhnachev, V.V., Solonnikov, V.A., On the problem of dynamic contact angle, PMM USSR 46 (1983), 771–779.MathSciNetMATHGoogle Scholar
  15. S1.
    Solonnikov, V.A., Solvability of a problem on the plane motion of a heavy viscous incompressible copillary liquid partially filling a container, Math. USSR Izvestija 14 (1980), 193–221.CrossRefMATHGoogle Scholar
  16. S2.
    Solonnikov, V.A., On the Stokes equation in domains with non smooth boundaries and on viscous incompressible flow with a free surface. In: Nonlinear partial differential equations and their applications, College de France, Seminar III, ed. by H. Brezis and J.L. Lions, Boston (1982), 340–423.Google Scholar
  17. S3.
    Solonnikov, V.A., Solvability of the problem of evolution of an isolated volume of viscous, incompressible capillary fluid, J. Sov. Math. (1986).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Dietmar Kröner
    • 1
  1. 1.Universität HeidelbergGermany

Personalised recommendations