On Leray's residue theory

  • B. Yu. Sternin
  • V. E. Shatalov
Part of the Lecture Notes in Mathematics book series (LNM, volume 1453)


Cohomology Group Smooth Manifold Cohomology Class Normal Bundle Residue Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leray, J., Le calcul différentiel et intégral sur une veriété analytique complexe (Problème de Cauchy, III), Bull. Soc. Math. de France, vol. 87, 1959, fasc. IIGoogle Scholar
  2. 2.
    Leray, J., Garding, L. et al., Problème de Cauchy, Paris, 1987Google Scholar
  3. 3.
    Sternin, B.Yu. and Shatalov, V.E., Characteristic Cauchy problem on a complex-analytic manifold, Lect. Notes Math., 1984, N 1108Google Scholar
  4. 4.
    Sternin, B.Yu. and Shatalov, V.E., Laplace-Radon integral operators and singularities of solutions of differential equations on complex-analytic manifolds. Globalnyi analiz i matematicheskaya fizika, Voronezh, 1987zbMATHGoogle Scholar
  5. 5.
    Isenberg, L.A. and Yuzhakov, A.P., Integral representations and residues in multidimensional complex analysis. Novosibirsk, 1979Google Scholar
  6. 6.
    Yuzhakov, A.P., Isenberg, L.A. et al., Multidimensional residues and their applications. Itogi mauki i tekhniki. Sovremenny problemy matematiki: Fundamentalnye napravleniya, 1985, vol. 8Google Scholar
  7. 7.
    Dolbeault, P. Theory of residues and homology, Lect. Notes Math., 1970, vol. 116Google Scholar
  8. 8.
    Kobayashi, S. and Nomizu, K., Foundations of differential geometry, New York, London, 1963Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • B. Yu. Sternin
    • 1
  • V. E. Shatalov
    • 2
  1. 1.Moscow Institute of Electronic EngineeringMoscowUSSR
  2. 2.Moscow Institute of Civil Aviation EngineersMoscowUSSR

Personalised recommendations