Lefschetz numbers for arithmetic groups

  • Jürgen Rohlfs
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1447)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    J. Arthur, The L 2-Lefschetz number of Hecke operators, Invent. math. 97, 1981, 257–290.MathSciNetCrossRefGoogle Scholar
  2. [Be]
    J. Bewersdorff, Eine Lefschetzsche Fixpunktformel für Heckeoperatoren, Bonner Mathematische Schriften Nr. 164, 1984.Google Scholar
  3. [Br]
    K. Brown, Complete Euler characteristics and fixed-point theory, Jour. Pure and Appl. Algebra, vol. 24, 1982, 103–121.MathSciNetCrossRefMATHGoogle Scholar
  4. [B-S]
    A. Borel and J.-P. Serre, Théorèmes de finitude en cohomology galoisienne, Comment. Math. Helvetici, Vol. 39, 1964, 111–196.MathSciNetCrossRefMATHGoogle Scholar
  5. [B-T]
    A. Borel and J. Tits, Compléments à l'article: Groupes réductifs, Pub. Math. I.H.E.S. 41, 1972, 253–276.MathSciNetCrossRefMATHGoogle Scholar
  6. [B-W]
    A. Borel and N. Wallach, Continuous cohomology, discrete subgroups and representations of reductive groups, Annals of Math. Studies Vol. 94, 1980, Princeton Univ. Press.Google Scholar
  7. [H 1]
    G. Harder, A Gauß-Bonnet theorem for discrete arithmetically defined groups, Ann. Scient. Éc. Norm. Sup., 4e série, 1971, 409–455.Google Scholar
  8. [H 2]
    G. Harder, On the cohomology of SL 2(O), In: Lie Groups and their Representations, Proc. of the summer school on Group Repres., London, Hilger, 1975, 139–150.Google Scholar
  9. [He]
    S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, London, 1962.MATHGoogle Scholar
  10. [K 1]
    R. Kottwitz, Sign changes in harmonic analysis on reductive groups, Transactions A.M.S. vol. 278, 1983, 289–297.MathSciNetCrossRefMATHGoogle Scholar
  11. [K 2]
    R. Kottwitz, Stable trace formula, Elliptic singular terms, Math. Ann. vol. 275, 1986, 365–399.MathSciNetCrossRefMATHGoogle Scholar
  12. [K 3]
    R. Kottwitz, Tamagawa numbers, Ann. of Math. vol. 127, 1988, 629–646.MathSciNetCrossRefMATHGoogle Scholar
  13. [Kr]
    N. Krämer, Beiträge zur Arithmetik imaginär quadratischer Zahlkörper, Bonner Mathematische Schriften Nr. 161, 1985.Google Scholar
  14. [L]
    J.-P. Labesse, Formule des traces tordue et représentations σ-discrètes, manuscript, Paris, 1989.Google Scholar
  15. [La]
    Lai, K.F., Lefschetz numbers and unitary groups, preprint, Hongkong University, 1983.Google Scholar
  16. [La-Le]
    Lai, K.F., Lee R., Finite group actions on Siegel modular spaces, preprint, Hongkong University, 1983.Google Scholar
  17. [La-S]
    J.-P. Labesse and J. Schwermer, On liftings and cusp cohomology of arithmetic groups, Invent. math. 83, 1986, 383–401.MathSciNetCrossRefMATHGoogle Scholar
  18. [Le-S 1]
    R. Lee and J. Schwermer, The Lefschetz number of an involution on the space of cusp forms of SL 3, Invent. Math. 73, 1983, 189–239.MathSciNetCrossRefMATHGoogle Scholar
  19. [Le-S 2]
    R. Lee and J. Schwermer, Geometry and arithmetic cycles attached to SL 3(ℤ) — I, Topology Vol. 25, 1986, 159–174.MathSciNetCrossRefMATHGoogle Scholar
  20. [M]
    H. Minkowski, Gesammelte Abhandlungen I, Teubner Verlag, Leipzig, Berlin, 1911.MATHGoogle Scholar
  21. [R 1]
    J. Rohlfs, Arithmetisch definierte Gruppen mit Galoisoperation, Habilitations-schrift, Bonn, 1976.MATHGoogle Scholar
  22. [R 2]
    J. Rohlfs, Arithmetisch definierte Gruppen mit Galoisoperation, Invent. math. 48, 1978, 185–205.MathSciNetCrossRefMATHGoogle Scholar
  23. [R 3]
    J. Rohlfs, The Lefschetz number of an involution on the space of classes of positive definite quadratic forms, Comment. Math. Helvetici 56, 1981, 272–296.MathSciNetCrossRefMATHGoogle Scholar
  24. [R 4]
    J. Rohlfs, On the cohomology of the Bianchi modular groups, Math. Z. Vol. 188, 1985, 253–269.MathSciNetCrossRefMATHGoogle Scholar
  25. [R 5]
    J. Rohlfs, Lefschetz numbers for arithmetic groups I, in preparation.Google Scholar
  26. [R-Sp 1]
    J. Rohlfs and B. Speh, Representations with cohomology in the discrete spectrum of subgroups of S0(n, 1)() and Lefschetz numbers, Ann. Scient. Éc. Norm. sup., 4e Série, t. 20, 1987, 89–136.MathSciNetMATHGoogle Scholar
  27. [R-Sp 2]
    J. Rohlfs and B. Speh, Automorphic representations and Lefschetz numbers, Ann. Scient. Éc. Norm. Sup. 4e série, t. 22, 1989, 473–499.MathSciNetMATHGoogle Scholar
  28. [R-Sp 3]
    J. Rohlfs and B. Speh, Boundary contributions to Lefschetz numbers for arithmetic groups I, these proceedings.Google Scholar
  29. [R-Sp 4]
    J. Rohlfs and B. Speh, Lefschetz numbers for arithmetic groups II, in preparation.Google Scholar
  30. [S]
    J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Math. Vol. 5, 1965, Springer Verlag, Berlin, Heidelberg, New York.MATHGoogle Scholar
  31. [St]
    R. Steinberg, Endomorphismus of linear algebraic groups, Mem. Amer. Math. Soc. vol. 80, 1968.Google Scholar
  32. [V]
    J.L. Verdier, Caractéristique d'Euler-Poincaré, Bull. Soc. Math. France, t. 101, 1973, 441–445.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Jürgen Rohlfs
    • 1
  1. 1.Katholische Universität EichstättEichstättFed. Rep. of Germany

Personalised recommendations