Some results on the Eisenstein cohomology of arithmetic subgroups of GLn

  • Günter Harder
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1447)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B-G]
    A. Borel-H. Garland: Laplacian and the discrete spectrum of an arithmetic group. Am. J. of Math., 309–335 (1982)Google Scholar
  2. [B-W]
    A. Borel-N. Wallach: Continuous cohomology, discrete subgroups, and representations of reductive groups. Ann. Math. Stud., Princeton University Press, 1980Google Scholar
  3. [Ca]
    W. Casselman: Introduction to the Theory of admissible Representations of p-adic reductive Groups unpublished manuscriptGoogle Scholar
  4. [Ha]
    G. Harder: Eisenstein cohomology of arithmetic groups. The case GL 2 Inventiones math., 89, 37–118 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. [H-C]
    Harish-Chandra: Automorphic forms on semisimple Lie groups Springer Lecture Notes, 62 (1968)Google Scholar
  6. [H-S]
    G. Harder-N. Schappacher: Special values of Hecke-L-functions and abelian integrals Springer Lecture Notes 1111 (1985), 17–49Google Scholar
  7. [J]
    H. Jacquet: The residual spectrum of GL(n) Lie group representations II. Springer Lecture Notes, 1041 (1984), 185–208Google Scholar
  8. [J-S]
    H. Jacquet-J. A. Shalika: On Euler products and the classification of automorphic forms, II. Am. J. of Math., vol. 103, No. 4, 777–815 (1981)MathSciNetCrossRefMATHGoogle Scholar
  9. [La]
    S. Lang: Algebraic Number Theory. Reading, MA, Addison Wesley Publ. Company, 1970MATHGoogle Scholar
  10. [Ro]
    J. Rogawski: Automorphic Representations of Unitary Groups in Three Variables Princeton University Press (to appear)Google Scholar
  11. [Wi]
    F. Wielonsky: Séries d'Eisenstein, Intégrales toroidales et une formule de Hecke L'Enseignement Mathématique, t. 31, (1985), p. 93–135MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Günter Harder
    • 1
  1. 1.Mathematisches Institut der Universität BonnBonn 1

Personalised recommendations