Subalgebra bases

  • Lorenzo Robbiano
  • Moss Sweedler
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1430)


Power Product Polynomial Ring Finite Subset Homogeneous Element Hilbert Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M. F., Macdonald, I. G., “Introduction to Commutative Algebra,” Addison-Wesley, 1969.Google Scholar
  2. 2.
    Fages, F., Associative-commutative unification, J. Symb. Comp. 3 (1987), 257–275.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Clausen, M., Fortenbacher, A., Efficient solution of linear diophantine equations, Interner Bericht 32/87, Universität Karlsruhe (1987).Google Scholar
  4. 4.
    Clausen, M., Fortenbacher, A., Efficient solution of linear diophantine equations, J. Symb. Comp. 8 (1989), 201–216.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gianni, P., Trager, B., Zacharias, G., Gröbner bases and primary decomposition of polynomial ideals, J. Symb. Comp 6 (1988), 149–167.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kapur, D., Madlener, K., A completion procedure for computing a canonical basis for a k-subalgebra, in “Computers and Mathematics (Cambridge MA 1989),” Springer, New York, 1989, pp. 1–11.Google Scholar
  7. 7.
    Lambert, J., Une borne pour les generateurs des solutions entieres positives d'une equation diophantine lineare., University de Paris-Sud, Laboratoire de Recherche en Informationque, Rap. 334, Orsay (1987).Google Scholar
  8. 8.
    Lang, S., “Algebra,” Addison-Wesley, Reading, Mass., 1984.zbMATHGoogle Scholar
  9. 9.
    Mora, T., Gröbner bases for non-commutative polynomial rings, AECC 3, in “Lecture Notes in Computer Science 229,” Springer, 1986, pp. 353–362.Google Scholar
  10. 10.
    Lankford, D., New non-negative integer basis algorithms for linear equations with integer coefficients., Unpublished manuscript.Google Scholar
  11. 11.
    Robbiano, L., Term orderings on the polynomial ring. Proc. EUROCAL 85, II, in “Lecture Notes in Computer Science 204,” Springer, 1985, pp. 513–517.Google Scholar
  12. 12.
    Robbiano, L., On the theory of graded structures, J. Symb. Comp. 2 (1986), 139–170.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Robbiano, L., Introduction to the theory of Gröbner bases, Queen's Papers in Pure and Applied Mathematics, V 5, No. 80 (1988).Google Scholar
  14. 14.
    Robbiano, L., Computing a SAGBI basis of a k-subalgebra, Presented at Mathematical Sciences Institut Workshop on Gröbner bases, Cornell University (1988).Google Scholar
  15. 15.
    Spear, D., A constructive approach to commutative ring theory, in “Proceedings 1977 MACSYMA User's Conference,” 1977, pp. 369–376.Google Scholar
  16. 16.
    Shannon, D., Sweedler, M., Using Gröbner bases to determine algebra membership, split surjective algebra homomorphisms and determine birational equivalence, J. Symb. Comp. 6 (1988), 267–273.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sweedler, M., Ideal bases and valuation rings, Preprint (1986).Google Scholar
  18. 18.
    Sweedler, M., Ideal bases and valuation rings: an overview, Preprint (1987).Google Scholar
  19. 19.
    Zhang, H., Speeding up basis generation of homogeneous linear deophantine equations, Unpublished manuscript (1989).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Lorenzo Robbiano
    • 1
    • 2
  • Moss Sweedler
    • 1
    • 2
  1. 1.Dipartimento di MatematicaUniversita di GenovaGenovaItaly
  2. 2.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations