Generic residual intersections

  • Graig Huneke
  • Bernd Ulrich
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1430)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Artin and M. Nagata, Residual intersections in Cohen-Macaulay rings, J. Math. Kyoto Univ. 12 (1972), 307–323.MathSciNetMATHGoogle Scholar
  2. 2.
    W. Bruns, Die Divisorenklassengruppe der Restklassenringe von Polynomringen nach Determinantenidealen, Revue Roumaine Math. Pur. Appl.20(1975), 1109–1111.MathSciNetMATHGoogle Scholar
  3. 3.
    W. Bruns, Divisors on varieties of complexes, Math. Ann. 264 (1983), 53–71.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    W. Bruns, A. Kustin, and M. Miller, The resolution of the generic residual intersection of a complete intersection, preprint.Google Scholar
  5. 5.
    W. Bruns and U. Vetter, “Determinantal Rings,” Lect. Notes Math. 1327, Springer, Berlin-Heidelberg, 1988.MATHGoogle Scholar
  6. 6.
    D. Buchsbaum and D. Eisenbud, Remarks on ideals and resolutions, Sympos. Math. XI (1973), 193–204.MathSciNetMATHGoogle Scholar
  7. 7.
    R. Fossum, “The divisor class group of a Krull domain,” Springer, Berlin-Heidelberg, 1973.CrossRefMATHGoogle Scholar
  8. 8.
    J. Herzog, A. Simis, and W. Vasconcelos, Approximation complexes and blowing-up rings, J. Algebra 74 (1982), 466–493.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    J. Herzog, W. Vasconcelos, and R. Villarreal, Ideals with sliding depth, Nagoya Math. J. 99 (1985), 159–172.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    M. Hochster, Criteria for the equality of ordinary and symbolic powers, Math. Z. 133 (1973), 53–65.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    M. Hochster, Properties of Noetherian rings stable under general grade reduction, Arch. Math. 24 (1973), 393–396.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    C. Huneke, On the associated graded ring of an ideal, Illinois J. Math. 26 (1982), 121–137.MathSciNetMATHGoogle Scholar
  13. 13.
    C. Huneke, Linkage and the Koszul Homology of ideals, Amer. J. Math. 104 (1982), 1043–1062.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    C. Huneke, Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math. Soc. 277 (1983), 739–673.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    C. Huneke and B. Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (1985), 1265–1303.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    C. Huneke and B. Ulrich, Algebraic linkage, Duke Math. J. 56 (1988), 415–429.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    C. Huneke and B. Ulrich, Residual intersections, J. reine angew. Math. 390 (1988), 1–20.MathSciNetMATHGoogle Scholar
  18. 18.
    C. Huneke and B. Ulrich, Local properties of licci ideals, in preparation.Google Scholar
  19. 19.
    P. Murthy, A note on factorial rings, Arch. Math. 15 (1964), 418–420.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    D. Kirby, A sequence of complexes associated with a matrix, J. London Math. Soc. 7 (1973), 523–530.MathSciNetMATHGoogle Scholar
  21. 21.
    A. Kustin and B. Ulrich, A family of complexes associated to an almost alternating map, with applications to residual intersections, in preparation.Google Scholar
  22. 22.
    A. Simis and W. Vasconcelos, The syzygies of the conormal module, Amer. J. Math. 103 (1981), 203–224.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    B. Ulrich, Parafactoriality and small divisor class groups, in preparation.Google Scholar
  24. 24.
    Y. Yoshino, The canonical module of graded rings defined by generic matrices, Nagoya Math. J. 81 (1981), 105–112.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Y. Yoshino, Some results on the variety of complexes, Nagoya J. Math 93 (1984), 39–60.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Graig Huneke
    • 1
    • 2
  • Bernd Ulrich
    • 1
    • 2
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations