Advertisement

Circle bundles

  • Shiing-shen Chern
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 597)

Keywords

Unit Normal Vector Magnetic Monopole Curvature Form Circle Bundle Complex Line Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    L. Auslander and R. Tolimieri, Abelian harmonic analysis, theta functions, and function algebras on a nilmanifold, Springer Lecture Notes, No. 436, (1975).Google Scholar
  2. 2.
    T. Banchoff and J. White, The behavior of the total twist and the self-linking number of a closed space curve under inversions, Math. Scandinavica, 36(1975), 254–262.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S. S. Chern, Complex manifolds without potential theory, van Nostrand, Princeton, 1967.zbMATHGoogle Scholar
  4. 4.
    P. A. M. Dirac, Quantised singularities in the electromagnetic field, Proc. R. Soc. London A133 (1931), 60–72.CrossRefzbMATHGoogle Scholar
  5. 5.
    J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Math. Studies 76, Princeton Univ. Press, 1974.Google Scholar
  6. 6.
    J. Morrow and K. Kodaira, Complex manifolds, Holt, Rinehart, and Winston, 1971.Google Scholar
  7. 7.
    W. Scherrer, Eine Kennzeichnung der Kugel, Vierteljahrschift der Naturforsch. Ges. Zurich 85(1940), Beiblatt 32, 40–46.MathSciNetGoogle Scholar
  8. 8.
    J. H. White, Twist invariants and the Pontryagin numbers of immersed manifolds, Proc. of Symp. in Pure Math., Vol. 27, Differential Geometry, Part 1, 429–437.Google Scholar
  9. 9.
    H. Wu, The equidistribution theory of holomorphic curves, Annals of Math. Studies, No. 64, Princeton Univ. Press, 1970.Google Scholar
  10. 10.
    T. T. Wu and C. N. Yang, Concept of nonintegrable phase factors and global formulation of gauge fields, Physical Review D, 12 (1975), 3845–3857.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Shiing-shen Chern
    • 1
  1. 1.University of CaliforniaBerkeley

Personalised recommendations