Cohomology of finite groups and brown-peterson cohomology

  • M. Tezuka
  • N. Yagita
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1370)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    M.F. Atiyah, Character and cohomology of finite groups, Publ. I.H.E.S. 9 (1964), 23–64.MathSciNetCrossRefGoogle Scholar
  2. [B]
    W. Browder, Cohomology and group actions, Invt. Math. 71 (1983), 599–607.MathSciNetCrossRefMATHGoogle Scholar
  3. [C-E]
    H.Cartan and S.Eilenberg, "Homological algebra" Princeton Univ. Press 1956.Google Scholar
  4. [E]
    L. Evens, On the Chern class of representation of finite groups, Trans. Amer. Math. Soc. 115 (1965), 180–193.MathSciNetCrossRefMATHGoogle Scholar
  5. [H-K-R]
    M.Hopkins, N.Kuhn and D.Ravenel.Google Scholar
  6. [J-W]
    D. Johnson and S. Wilson, BP operations and Morava’s extraordinary K-theories, Math. Zeit. 144 (1975), 55–75.MathSciNetCrossRefMATHGoogle Scholar
  7. [L]
    G. Lewis, The integral cohomology ring of groups of order p3, Trans. Amer. Math. Soc. 132 (1968), 501–529.MathSciNetGoogle Scholar
  8. [N]
    G.Nishida, Stable homotopy types of classifying spaces of finite groups, "Algebraic and Topological theories" to memory of T.Miyata, 1986 Kinokuniya Comp. Ltd.Google Scholar
  9. [Q1]
    D. Quillen, A cohomological criterion for p-nilpotency J. Pure and Appl. Algebra 4 (1971), 373–376.MathSciNetGoogle Scholar
  10. [Q2]
    D. Quillen, The mod 2 cohomolgy ring of extra-special 2-groups and Spinor group, Math. Ann. 194 (1971), 197–223.MathSciNetCrossRefMATHGoogle Scholar
  11. [R]
    D. Ravenel, Morava K-theory and finite groups, contemporary Math. 12 (1982), 289–292.MathSciNetCrossRefMATHGoogle Scholar
  12. [T]
    C.B. Thomas, Chern classes of representations, Bull. London Math. Soc. 18 (1986), 225–240.MathSciNetCrossRefMATHGoogle Scholar
  13. [T-Y-1]
    M. Tezuka and N. Yagita, The mod p cohomology ring of GL3(Fp), J. Algebra 81 (1983), 295–303.MathSciNetCrossRefMATHGoogle Scholar
  14. [T-Y-2]
    M. Tezuka and N. Yagita, The varieties of the mod p cohomology rings of extra special p-groups for an odd prime p, Math. Proc. Camb. Phil. Soc. 94 (1983), 443–459.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. Tezuka
    • 1
  • N. Yagita
    • 2
  1. 1.Department of MathematicsTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of MathematicsMusashi Institute of TechnologyTokyoJapan
  3. 3.Department of MathematicsRyukyu UniversityOkinawaJapan

Personalised recommendations