Cohomology of finite groups and brown-peterson cohomology

  • M. Tezuka
  • N. Yagita
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1370)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    M.F. Atiyah, Character and cohomology of finite groups, Publ. I.H.E.S. 9 (1964), 23–64.MathSciNetCrossRefGoogle Scholar
  2. [B]
    W. Browder, Cohomology and group actions, Invt. Math. 71 (1983), 599–607.MathSciNetCrossRefMATHGoogle Scholar
  3. [C-E]
    H.Cartan and S.Eilenberg, "Homological algebra" Princeton Univ. Press 1956.Google Scholar
  4. [E]
    L. Evens, On the Chern class of representation of finite groups, Trans. Amer. Math. Soc. 115 (1965), 180–193.MathSciNetCrossRefMATHGoogle Scholar
  5. [H-K-R]
    M.Hopkins, N.Kuhn and D.Ravenel.Google Scholar
  6. [J-W]
    D. Johnson and S. Wilson, BP operations and Morava’s extraordinary K-theories, Math. Zeit. 144 (1975), 55–75.MathSciNetCrossRefMATHGoogle Scholar
  7. [L]
    G. Lewis, The integral cohomology ring of groups of order p3, Trans. Amer. Math. Soc. 132 (1968), 501–529.MathSciNetGoogle Scholar
  8. [N]
    G.Nishida, Stable homotopy types of classifying spaces of finite groups, "Algebraic and Topological theories" to memory of T.Miyata, 1986 Kinokuniya Comp. Ltd.Google Scholar
  9. [Q1]
    D. Quillen, A cohomological criterion for p-nilpotency J. Pure and Appl. Algebra 4 (1971), 373–376.MathSciNetGoogle Scholar
  10. [Q2]
    D. Quillen, The mod 2 cohomolgy ring of extra-special 2-groups and Spinor group, Math. Ann. 194 (1971), 197–223.MathSciNetCrossRefMATHGoogle Scholar
  11. [R]
    D. Ravenel, Morava K-theory and finite groups, contemporary Math. 12 (1982), 289–292.MathSciNetCrossRefMATHGoogle Scholar
  12. [T]
    C.B. Thomas, Chern classes of representations, Bull. London Math. Soc. 18 (1986), 225–240.MathSciNetCrossRefMATHGoogle Scholar
  13. [T-Y-1]
    M. Tezuka and N. Yagita, The mod p cohomology ring of GL3(Fp), J. Algebra 81 (1983), 295–303.MathSciNetCrossRefMATHGoogle Scholar
  14. [T-Y-2]
    M. Tezuka and N. Yagita, The varieties of the mod p cohomology rings of extra special p-groups for an odd prime p, Math. Proc. Camb. Phil. Soc. 94 (1983), 443–459.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. Tezuka
    • 1
  • N. Yagita
    • 2
  1. 1.Department of MathematicsTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of MathematicsMusashi Institute of TechnologyTokyoJapan
  3. 3.Department of MathematicsRyukyu UniversityOkinawaJapan

Personalised recommendations