Higher homotopy associativity

  • Norio Iwase
  • Mamoru Mimura
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1370)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    Borel, A.: Some remarks about Lie groups transitive on spheres and tori. Bull. of A. M. S. 55, 580–587(1949)MathSciNetCrossRefMATHGoogle Scholar
  2. [H]
    Hemmi, Y.: Mod 3 homotopy associative finite H-spaces and sphere extensions of classical groups, preprintGoogle Scholar
  3. [HM]
    Hubbuck, J., Mimura, M.: Certain p-regular H-spaces. Arch. Math. 49, 79–82(1987)MathSciNetCrossRefMATHGoogle Scholar
  4. [I1]
    Iwase, N.: On the ring structure of K*(XPn). Master thesis in Kyushu Univ., (1982) (in Japanese)Google Scholar
  5. [I2]
    Iwase, N.: On the K-ring structure of X-projective n-space. Mem. Fac. Sci. Kyushu Univ. Ser. 2 38, 285–297(1984)MathSciNetMATHGoogle Scholar
  6. [I3]
    Iwase, N.: Equivariant localization and completion as a continuous functor. preprint.Google Scholar
  7. [MNT]
    Mimura, M., Nishida, G., Toda, H.: Localization of CW-complexes and its applications. J. Math. Soc. Japan 23, 593–624(1971)MathSciNetCrossRefMATHGoogle Scholar
  8. [N]
    Norlan, R. A.: An-actions on fibre spaces. Indiana Univ. Math. J. 21, 285–313(1971)MathSciNetCrossRefGoogle Scholar
  9. [S]
    Stasheff, J. D.: Homotopy associativity of H-spaces, I, II. Trans. Amer. Math. Soc. 108, 275–292, 293–312(1963)MathSciNetCrossRefMATHGoogle Scholar
  10. [Z1]
    Zabrodsky, A.: On construction of new finite CW H-spaces. Inventiones. Math. 16, 260–266(1972)MathSciNetCrossRefMATHGoogle Scholar
  11. [Z2]
    Zabrodsky, A.: Homotopy associativity and finite CW complexes. Topology, 9, 121–128(1970)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Norio Iwase
    • 1
    • 2
  • Mamoru Mimura
    • 1
    • 2
  1. 1.Department of mathematicsKyushu UniversityFukuokaJapan
  2. 2.Department of mathematicsOkayama UniversityOkayamaJapan

Personalised recommendations