Explorations in martingale theory and its applications

  • Donald L. Burkholder
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1464)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I. A. Stegun, editors, “Handbook of mathematical functions,” Dover, New York, 1970.Google Scholar
  2. D. J. Aldous, Unconditional bases and martingales in L p(F), Math. Proc. Cambridge Phil. Soc. 85 (1979), 117–123.MathSciNetMATHCrossRefGoogle Scholar
  3. T. Ando, Contractive projections in L p spaces, Pacific J. Math. 17 (1966), 391–405.MathSciNetMATHCrossRefGoogle Scholar
  4. A. Baernstein, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J. 27 (1978), 833–852.MathSciNetMATHCrossRefGoogle Scholar
  5. R. Bañuelos, A sharp good-γ inequality with an application to Riesz transforms, Mich. Math. J. 35 (1988), 117–125.MathSciNetMATHCrossRefGoogle Scholar
  6. R. Bass, A probabilistic approach to the boundedness of singular integral operators, Séminaire de Probabilités XXIV 1988/89, Lecture Notes in Mathematics 1426 (1990), 15–40.MathSciNetCrossRefGoogle Scholar
  7. A. Benedek, A. P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. 48 (1962), 356–365.MathSciNetMATHCrossRefGoogle Scholar
  8. E. Berkson, T. A. Gillespie, and P. S. Muhly, Théorie spectrale dans les espaces UMD, C. R. Acad. Sci. Paris 302 (1986), 155–158.MathSciNetMATHGoogle Scholar
  9. ___, Generalized analyticity in UMD spaces, Arkiv för Math. 27 (1989), 1–14.MathSciNetMATHCrossRefGoogle Scholar
  10. K. Bichteler, Stochastic integration and L p-theory of semimartingales, Ann. Prob. 9 (1981), 49–89.MathSciNetMATHCrossRefGoogle Scholar
  11. O. Blasco, Hardy spaces of vector-valued functions: Duality, Trans. Amer. Math. Soc. 308 (1988a), 495–507.MathSciNetMATHCrossRefGoogle Scholar
  12. ___, Boundary values of functions in vector-valued Hardy spaces and geometry on Banach spaces, J. Funct. Anal. 78 (1988b), 346–364.MathSciNetMATHCrossRefGoogle Scholar
  13. G. Blower, A multiplier characterization of analytic UMD spaces, Studia Math. 96 (1990), 117–124.MathSciNetMATHGoogle Scholar
  14. B. Bollobás, Martingale inequalities, Math. Proc. Cambridge Phil. Soc. 87 (1980), 377–382.MathSciNetMATHCrossRefGoogle Scholar
  15. ___, editor, “Littlewood's Miscellany,” Cambridge University Press, Cambridge, 1986.MATHGoogle Scholar
  16. J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), 163–168.MathSciNetMATHCrossRefGoogle Scholar
  17. ___, Extension of a result of Benedek, Calderón, and Panzone, Ark. Mat. 22 (1984), 91–95.MathSciNetMATHCrossRefGoogle Scholar
  18. ___, Vector valued singular integrals and the H 1-BMO duality, in “Probability Theory and Harmonic Analysis,” edited by J. A. Chao and W. A. Woyczynski, Marcel Dekker, New York, 1986, pp. 1–19.Google Scholar
  19. A. V. Bukhvalov, Hardy spaces of vector-valued functions, J. Sov. Math. 16 (1981), 1051–1059.MATHCrossRefGoogle Scholar
  20. _____, Continuity of operators in spaces of vector functions, with applications to the theory of bases, J. Sov. Math. 44 (1989), 749–762.MathSciNetMATHCrossRefGoogle Scholar
  21. D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1504.MathSciNetMATHCrossRefGoogle Scholar
  22. _____, Distribution function inequalities for martingales, Ann. Prob. 1 (1973), 19–42.MathSciNetMATHCrossRefGoogle Scholar
  23. _____, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math. 26 (1977), 182–205.MathSciNetMATHCrossRefGoogle Scholar
  24. _____, A sharp inequality for martingale transforms, Ann. Prob. 7 (1979), 858–863.MathSciNetMATHCrossRefGoogle Scholar
  25. _____, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Prob. 9 (1981a), 997–1011.MathSciNetMATHCrossRefGoogle Scholar
  26. _____, Martingale transforms and the geometry of Banach spaces, Proceedings of the Third International Conference on Probability in Banach Spaces, Tufts University, 1980, Lecture Notes in Mathematics 860 (1981b), 35–50.MathSciNetMATHCrossRefGoogle Scholar
  27. _____, A nonlinear partial differential equation and the unconditional constant of the Haar system in L p, Bull. Amer. Math. Soc. 7 (1982), 591–595.MathSciNetMATHCrossRefGoogle Scholar
  28. _____, A geometric condition that imples the existence of certain singular integrals of Banach-space-valued functions, in “Conference on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, 1981),” edited by William Beckner, Alberto P. Calderón, Robert Fefferman, and Peter W. Jones, Wadsworth, Belmont, California, 1983, pp. 270–286.Google Scholar
  29. _____, Boundary value problems and sharp inequalities for martingale transforms, Ann. Prob. 12 (1984), 647–702.MathSciNetMATHCrossRefGoogle Scholar
  30. _____, An elementary proof of an inequality of R. E. A. C. Paley, Bull. London Math. Soc. 17 (1985), 474–478.MathSciNetMATHCrossRefGoogle Scholar
  31. _____, An extension of a classical martingale inequality, in “Probability Theory and Harmonic Analysis,” edited by J. A. Chao and W. A. Woyczynski. Marcel Dekker, New York, 1986a, pp. 21–30.Google Scholar
  32. , Martingales and Fourier analysis in Banach spaces, C.I.M.E. Lectures, Varenna (Como), Italy, 1985, Lecture Notes in Mathematics 1206 (1986b), 61–108.MathSciNetMATHCrossRefGoogle Scholar
  33. _____, A sharp and strict L p-inequality for stochastic integrals, Ann. Prob. 15 (1987), 268–273.MathSciNetMATHCrossRefGoogle Scholar
  34. _____, A proof of Pelczyński's conjecture for the Haar system, Studia Math. 91 (1988a), 79–83.MathSciNetMATHGoogle Scholar
  35. _____, Sharp inequalities for martingales and stochastic integrals, Colloque Paul Lévy, Palaiseau, 1987, Astérisque 157–158 (1988b), 75–94.MathSciNetMATHGoogle Scholar
  36. _____, Differential subordination of harmonic functions and martingales, Harmonic Analysis and Partial Differential Equations (El Escorial, 1987), Lecture Notes in Mathematics 1384 (1989a), 1–23.MathSciNetMATHCrossRefGoogle Scholar
  37. _____, On the number of escapes of a martingale and its geometrical significance, in “Almost Everywhere Convergence,” edited by Gerald A. Edgar and Louis Sucheston. Academic Press, New York, 1989b, pp. 159–178.Google Scholar
  38. D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta. Math. 124 (1970), 249–304.MathSciNetMATHCrossRefGoogle Scholar
  39. A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139.MathSciNetMATHCrossRefGoogle Scholar
  40. _____, On singular integrals, Amer. J. Math. 78 (1956), 289–309.MathSciNetMATHCrossRefGoogle Scholar
  41. S. D. Chatterji, Les martingales et leurs applications analytiques, Lecture Notes in Mathematics 307 (1973), 27–164.MathSciNetCrossRefGoogle Scholar
  42. K. P. Choi, Some sharp inequalities for martingale transforms, Trans. Amer. Math. Soc. 307 (1988), 279–300.MathSciNetMATHCrossRefGoogle Scholar
  43. F. Cobos, Some spaces in which martingale difference sequences are unconditional, Bull. Polish Acad. of Sci. Math. 34 (1986), 695–703.MathSciNetMATHGoogle Scholar
  44. ___, Duality, UMD-property and Lorentz-Marcinkiewicz operator spaces, in “16 Colóquio Brasileiro de Matemática,” Rio de Janeiro, 1988, pp. 97–106.Google Scholar
  45. F. Cobos and D. L. Fernandez, Hardy-Sobolev spaces and Besov spaces with a function parameter, Lecture Notes in Mathematics 1302 (1988), 158–170.MathSciNetMATHCrossRefGoogle Scholar
  46. T. Coulhon and D. Lamberton, Régularité L p pour les équations d'évolution, in “Séminaire d'Analyse Fonctionnelle, 1984/1985,” Publ. Math. Univ. Paris VII 26 (1986), 155–165.Google Scholar
  47. D. C. Cox, The best constant in Burkholder's weak-L 1 inequality for the martingale square function, Proc. Amer. Math. Soc. 85 (1982), 427–433.MathSciNetMATHGoogle Scholar
  48. D. C. Cox and R. P. Kertz, Common strict character of some sharp infinite-sequence martingale inequalities, Stochastic Process. Appl. 20 (1985), 169–179.MathSciNetMATHCrossRefGoogle Scholar
  49. B. Davis, A comparison test for martingale inequalities, Ann. Math. Statist. 40 (1969), 505–508.MathSciNetMATHCrossRefGoogle Scholar
  50. ___, On the weak type (1,1) inequality for conjugate functions, Proc. Amer. Math. Soc. 44 (1974), 307–311.MathSciNetMATHGoogle Scholar
  51. ___, On the L p norms of stochastic integrals and other martingales, Duke Math. J. 43 (1976), 697–704.MathSciNetMATHCrossRefGoogle Scholar
  52. M. Defant, On the vector-valued Hilbert transform, Math. Nachr. 141 (1989), 251–265.MathSciNetMATHCrossRefGoogle Scholar
  53. C. Dellacherie and P. A. Meyer, “Probabilités et potentiel: théorie des martingales,” Hermann, Paris, 1980.MATHGoogle Scholar
  54. J. Diestel and J. J. Uhl, “Vector Measures,” Math. Surveys 15, American Mathematical Society, Providence, Rhode Island, 1977.MATHGoogle Scholar
  55. C. Doléans, Variation quadratique des martingales continues à droite, Ann. Math. Statist. 40 (1969), 284–289.MathSciNetMATHCrossRefGoogle Scholar
  56. J. L. Doob, “Stochastic Processes,” Wiley, New York, 1953.MATHGoogle Scholar
  57. ____, Remarks on the boundary limits of harmonic functions, J. SIAM Numer. Anal. 3 (1966), 229–235.MathSciNetMATHCrossRefGoogle Scholar
  58. ____, “Classical Potential Theory and Its Probabilistic Counterpart,” Springer, New York, 1984.MATHCrossRefGoogle Scholar
  59. L. E. Dor and E. Odell, Monotone bases in L p, Pacific J. Math. 60 (1975), 51–61.MathSciNetMATHCrossRefGoogle Scholar
  60. G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189–201.MathSciNetMATHCrossRefGoogle Scholar
  61. I. Doust, Contractive projections on Banach spaces, Proc. Centre for Math. Anal., Australian National University 20 (1988), 50–58.MathSciNetMATHGoogle Scholar
  62. ___, Well-bounded and scalar-type spectral operators on L p spaces, J. London Math. Soc. 39 (1989), 525–534.MathSciNetMATHCrossRefGoogle Scholar
  63. L. E. Dubins, Rises and upcrossings of nonnegative martingales, Illinois J. Math. 6 (1962), 226–241.MathSciNetMATHGoogle Scholar
  64. P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281–288.MathSciNetCrossRefGoogle Scholar
  65. M. Essén, A superharmonic proof of the M. Riesz conjugate function theorem, Ark. Math. 22 (1984), 241–249.MathSciNetMATHCrossRefGoogle Scholar
  66. D. L. Fernandez, Vector-valued singular integral operators on L p-spaces with mixed norms and applications, Pacific J. Math. 129 (1987), 257–275.MathSciNetMATHCrossRefGoogle Scholar
  67. _____, On Fourier multipliers of Banach-lattice valued functions, Rev. Roumaine Math. Pures Appl. 34 (1989), 635–642.MathSciNetMATHGoogle Scholar
  68. D. L. Fernandez and J. B. Garcia, Interpolation of Orlicz-valued function spaces and U.M.D. property, 26° Semi'ario Brasileiro de Análise (Rio de Janeiro, 1987), Trabalhos Apresentados, 269–281.Google Scholar
  69. T. Figiel, On equivalence of some bases to the Haar system in spaces of vector-valued functions, Bull. Polon. Acad. Sci. 36 (1988), 119–131.MathSciNetMATHGoogle Scholar
  70. ___, Singular integral operators: a martingale approach, to appear in the Proceedings of the Conference on the Geometry of Banach Spaces (Strobl, Austria, 1989).Google Scholar
  71. T. W. Gamelin, “Uniform Algebras and Jensen Measures,” Cambridge University Press, London, 1978.MATHGoogle Scholar
  72. D. J. H. Garling, Brownian motion and UMD-spaces, Conference on Probability and Banach Spaces, Zaragoza, 1985, Lecture Notes in Mathematics 1221 (1986), 36–49.MathSciNetMATHCrossRefGoogle Scholar
  73. Y. Giga and H. Sohr, Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, preprint.Google Scholar
  74. D. Gilat, The best bound in the L log L inequality of Hardy and Littlewood and its martingale counterpart, Proc. Amer. Math. Soc. 97 (1986), 429–436.MathSciNetMATHGoogle Scholar
  75. S. Guerre, On the closedness of the sum of closed operators on a UMD space, in “Banach Space Theory,” American Mathematical Society, Providence, Rhode Island, 1989, pp. 239–251.CrossRefGoogle Scholar
  76. ___, Complex powers of operators and UMD spaces, manuscript.Google Scholar
  77. R. F. Gundy, “Some Topics in Probability and Analysis,” Regional Conference Series in Mathematics 70, American Mathematical Society, Providence, Rhode Island, 1989.MATHCrossRefGoogle Scholar
  78. U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1982), 231–283.MathSciNetMATHGoogle Scholar
  79. U. Haagerup and G. Pisier, Factorization of analytic functions with values in non-commutative L 1-spaces and applications, Can. J. Math. 41 (1989), 882–906.MathSciNetMATHCrossRefGoogle Scholar
  80. G. H. Hardy, J. E. Littlewood, and G. Pólya, “Inequalities,” Cambridge University Press, Cambridge, 1934.MATHGoogle Scholar
  81. W. Hensgen, On complementation of vector-valued Hardy spaces, Proc. Amer. Math. Soc. 104 (1988), 1153–1162.MathSciNetMATHCrossRefGoogle Scholar
  82. ____, On the dual space of H p(X), 1<p<∞, J. Funct. Anal. 92 (1990), 348–371.MathSciNetMATHCrossRefGoogle Scholar
  83. P. Hitczenko, Comparison of moments for tangent sequences of random variables, Probab. Th. Rel. Fields 78 (1988), 223–230.MathSciNetMATHCrossRefGoogle Scholar
  84. ____, On tangent sequences of UMD-space valued random vectors, manuscript.Google Scholar
  85. ____, Upper bounds for the L p-norms of martingales, Probab. Th. Rel. Fields 86 (1990), 225–238.MathSciNetMATHCrossRefGoogle Scholar
  86. ____, Best constants in martingale version of Rosenthal's inequality, Ann. Probab. 18 (1990), 1656–1668.MathSciNetMATHCrossRefGoogle Scholar
  87. R. C. James, Some self dual properties of normed linear spaces, Ann. Math. Studies 69 (1972a), 159–175.MathSciNetGoogle Scholar
  88. ____, Super-reflexive spaces with bases, Pacific J. Math. 41 (1972b), 409–419.MathSciNetMATHCrossRefGoogle Scholar
  89. ____, Super-reflexive Banach spaces, Can. J. Math. 24 (1972c), 896–904.MathSciNetMATHCrossRefGoogle Scholar
  90. W. B. Johnson and G. Schechtman, Martingale inequalities in rearrangement invariant function spaces, Israel J. Math. 64 (1988), 267–275.MathSciNetMATHCrossRefGoogle Scholar
  91. N. J. Kalton, Differentials of complex interpolation processes for Köthe function spaces, a paper delivered at the Conference on Function Spaces (Auburn University, 1989).Google Scholar
  92. G. Klincsek, A square function inequality, Ann. Prob. 5 (1977), 823–825.MathSciNetMATHCrossRefGoogle Scholar
  93. A. N. Kolmogorov, Sur les fonctions harmoniques conjuguées et les séries de Fourier, Fund. Math. 7 (1925), 24–29.MATHGoogle Scholar
  94. H. König, Vector-valued multiplier theorems, in “Séminaire d'analyse fonctionnelle, 1985–1987,” Publications mathématique de l'université Paris VII, 1988, pp. 131–140.Google Scholar
  95. H. Kunita, Stochastic integrals based on martingales taking values in Hilbert space, Nagoya Math. J. 38 (1970), 41–52.MathSciNetMATHGoogle Scholar
  96. S. Kwapień, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972), 583–595.MathSciNetMATHGoogle Scholar
  97. S. Kwapień and W. A. Woyczynski, Tangent sequences of random variables: Basic inequalities and their applications, in “Almost Everywhere Convergence,” edited by Gerald A. Edgar and Louis Sucheston. Academic Press, New York, 1989, pp. 237–265.Google Scholar
  98. J. Lindenstrauss and A. Pelczyński, Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225–249.MathSciNetMATHCrossRefGoogle Scholar
  99. J. Lindenstrauss and L. Tzafriri, “Classical Banach Spaces I: Sequence Spaces,” Springer, New York, 1977.MATHCrossRefGoogle Scholar
  100. ______, “Classical Banach Spaces II: Function Spaces,” Springer, New York, 1979.MATHCrossRefGoogle Scholar
  101. A. Mandelbaum, L. A. Shepp, and R. Vanderbei, Optimal switching between a pair of Brownian motions, Ann. Prob. 18 (1990), 1010–1033.MathSciNetMATHCrossRefGoogle Scholar
  102. J. Marcinkiewicz, Quelques théorèmes sur les séries orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84–96.MATHGoogle Scholar
  103. B. Maurey, Système de Haar, in “Séminaire Maurey-Schwartz, 1974–1975,” École Polytechnique, Paris, 1975.Google Scholar
  104. T. R. McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans. Amer. Math. Soc. 285 (1984), 739–757.MathSciNetMATHCrossRefGoogle Scholar
  105. _____, A Skorohod-like representation in infinite dimensions, Probability in Banach Spaces V, Lecture Notes in Mathematics 1153 (1985), 359–368.MathSciNetMATHCrossRefGoogle Scholar
  106. _____, Decoupling and stochastic integration in UMD Banach spaces, Prob. Math. Stat. 10 (1989), 283–295.MathSciNetMATHGoogle Scholar
  107. H. P. McKean, Geometry of differential space, Ann. Prob. 1 (1973), 197–206.MathSciNetMATHCrossRefGoogle Scholar
  108. I. Monroe, Martingale operator norms and local times, manuscript.Google Scholar
  109. A. A. Novikov, On stopping times for the Wiener process, (Russian, English summary), Teor. Verojatnost. i Primenen 16 (1971), 458–465.MathSciNetGoogle Scholar
  110. A. M. Olevskii, Fourier series and Lebesgue functions, (Russian), Uspehi Mat. Nauk 22 (1967), 237–239.MathSciNetGoogle Scholar
  111. _____A. M. Olevskii, “Fourier Series with Respect to General Orthogonal Systems,” Springer, New York, 1975.CrossRefGoogle Scholar
  112. R. E. A. C. Paley, A remarkable series of orthogonal functions I., Proc. London Math. Soc. 34 (1932), 241–264.MathSciNetMATHCrossRefGoogle Scholar
  113. A. Pełczyński, Structural theory of Banach spaces and its interplay with analysis and probability, in “Proceedings of the International Congress of Mathematicians (Warsaw, 1983),” PWN, Warsaw, 1984, pp. 237–269.MATHGoogle Scholar
  114. ___, Norms of classical operators in function spaces, Colloque Laurent Schwartz, Astérisque 131 (1985), 137–162.MathSciNetMATHGoogle Scholar
  115. A. Pełczyński and H. Rosenthal, Localization techniques in L p spaces, Studia Math. 52 (1975), 263–289.MATHGoogle Scholar
  116. S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972), 165–179.MathSciNetMATHGoogle Scholar
  117. G. Pisier, Un exemple concernant la super-réflexivité, in “Séminaire Maurey-Schwartz, 1974–75,” École Polytechnique, Paris, 1975a.Google Scholar
  118. ____, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975b), 326–350.MathSciNetMATHCrossRefGoogle Scholar
  119. A. O. Pittenger, Note on a square function inequality, Ann. Prob. 7 (1979), 907–908.MathSciNetMATHCrossRefGoogle Scholar
  120. M. Riesz, Sur les fonctions conjuguées, Math. Z. 27 (1927), 218–244.MathSciNetMATHCrossRefGoogle Scholar
  121. J. L. Rubio de Francia, Martingale and integral transforms of Banach space valued functions, Conference on Probability and Banach Spaces, Zaragoza, 1985, Lecture Notes in Mathematics 1221 (1986), 195–222.MathSciNetCrossRefGoogle Scholar
  122. J. L. Rubio de Francia and J. L. Torrea, Some Banach techniques in vector valued Fourier analysis, Colloq. Math. 54 (1987), 271–284.MathSciNetMATHGoogle Scholar
  123. J. L. Rubio de Francia, F. J. Ruiz, and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Advances in Math. 62 (1986), 7–48.MathSciNetMATHCrossRefGoogle Scholar
  124. J. Schwartz, A remark on inequalities of Calderón-Zygmund type for vector-valued functions, Comm. Pure Appl. Math. 14 (1961), 785–799.MathSciNetMATHCrossRefGoogle Scholar
  125. L. A. Shepp, A first passage problem for the Wiener process, Ann. Math. Statist. 38 (1967), 1912–1914.MathSciNetMATHCrossRefGoogle Scholar
  126. E. M. Stein, “Singular Integrals and Differentiability Properties of Functions,” Princeton University Press, Princeton, 1970.MATHGoogle Scholar
  127. E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables: I. The theory of H p-spaces, Acta Math. 103 (1960), 25–62.MathSciNetMATHCrossRefGoogle Scholar
  128. S. J. Szarek, On the best constants in the Khinchin inequality, Studia Math. 58 (1976), 197–208.MathSciNetMATHGoogle Scholar
  129. B. Tomaszewski, Sharp weak-type inequalities for analytic functions on the unit disc, Bull. London Math. Soc. 18 (1986), 355–358.MathSciNetMATHCrossRefGoogle Scholar
  130. L. Tzafriri, Remarks on contractive projections in L p-spaces, Israel J. Math. 7 (1969), 9–15.MathSciNetMATHCrossRefGoogle Scholar
  131. G. Wang, “Some Sharp Inequalities for Conditionally Symmetric Martingales,” doctoral thesis, University of Illinois, Urbana, Illinois, 1989.Google Scholar
  132. ____, Sharp square-function inequalities for conditionally symmetric martingales, Trans. Amer. Math. Soc. (to appear).Google Scholar
  133. ____, Sharp maximal inequalities for conditionally symmetric martingales and Brownian motion, Proc. Amer. Math. Soc. (to appear).Google Scholar
  134. ____, Sharp inequalities for the conditional square function of a martingale, Ann. Prob. (to appear).Google Scholar
  135. T. M. Wolniewicz, The Hilbert transform in weighted spaces of integrable vector-valued functions, Colloq. Math. 53 (1987), 103–108.MathSciNetMATHGoogle Scholar
  136. M. Yor, Sur les intégrales stochastique à valeurs dans un Banach, C. R. Acad. Sci. Paris 277 (1973), 467–469.MATHGoogle Scholar
  137. F. Zimmermann, On vector-valued Fourier multiplier theorems, Studia Math. 93 (1989), 201–222.MathSciNetMATHGoogle Scholar
  138. J. Zinn, Comparison of martingale differences, Lecture Notes in Mathematics 1153 (1985), 453–457.MathSciNetCrossRefGoogle Scholar
  139. A. Zygmund, “Trigonometric Series I, II,” Cambridge University Press, Cambridge, 1959.MATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Donald L. Burkholder
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbana

Personalised recommendations