Topological degree and boundary value problems for nonlinear differential equations

  • J. Mawhin
Part of the Lecture Notes in Mathematics book series (LNM, volume 1537)


Periodic Solution Degree Theory Index Zero Continuation Theorem Autonomous Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.V. Amel'kin, I.V. Gaishun and N.N. Ladis, Periodic solutions in the case of a constantly acting perturbation, Differential equations, 11 (1975), 1569–1573MATHGoogle Scholar
  2. [2]
    A. Bahri and H. Berestycki, Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math. 37 (1984), 403–442MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    A. Bahri and H. Berestycki, Forced vibrations of superquadratic Hamiltonian systems, Acta Math. 152 (1984), 143–197.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Th. Bartsch and J. Mawhin, The Leray-Schauder degree of S 1-equivariant operators associated to autonomous neutral equations in spaces of periodic functions, J. Differential Equations, 92 (1991), 90–99MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    J.W. Bebernes and K. Schmitt, Periodic boundary value problems for systems of second order differential equations, J. Differential Equations, 13 (1973), 32–47MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    I. Berstein and A. Halanay, The index of a critical point and the existence of periodic solutions to a system with small parameter, Doklady Ak. Nauk. 111 (1956), 923–925 (translation and remarks by G. B. Gustafson)MATHGoogle Scholar
  7. [7]
    N.A. Bobylev, The construction of regular guiding functions, Soviet Math. Dokl., 9 (1968), 1353–1355MATHGoogle Scholar
  8. [8]
    L.E.J. Brouwer, Ueber Abbildungen von Mannigfaltigkeiten, Math. Ann. 71 (1912), 97–115MATHCrossRefGoogle Scholar
  9. [9]
    A. Capietto. Continuation theorems for periodic boundary value problems, Ph.D. Thesis, SISSA, Trieste, 1990MATHGoogle Scholar
  10. [10]
    A. Capietto, J. Mawhin, and F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., to appear.Google Scholar
  11. [11]
    A. Capietto, J. Mawhin and F. Zanolin, The coincidence degree of some functional differential operators in spaces of periodic functions and related continuation theorems, in Delay Differential Equations and Dynamical Systems (Claremont 1990) Busenberg, Martelli eds, Springer, Berlin, 1991, 76–87.CrossRefGoogle Scholar
  12. [12]
    A. Capietto, J. Mawhin and F. Zanolin, A continuation approach to superlinear periodic boundary value problems, J. Differential Equations 88 (1990), 347–395MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    A. Capietto, J. Mawhin and F. Zanolin, Periodic solutions of some superlinear functional differential equations, in Ordinary and functional Differential Equations, Kyoto 1990, World Scientific, Singapore, 1991, 19–31Google Scholar
  14. [14]
    A. Capietto, J. Mawhin and F. Zanolin, A continuation approach to superlinear two point boundary value problems, in preparationGoogle Scholar
  15. [15]
    A. Capietto and F. Zanolin, An existence theorem for periodic solutions in convex sets with applications, Results in Mathematics, 14 (1988), 10–29MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    A. Capietto and F. Zanolin, A continuation theorem for the periodic BVP in flow-invariant ENRs with applications, J. Differential Equations, 83 (1990), 244–276MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    J. Cronin, The number of periodic solutions of nonautonomous systems, Duke Math. J., 27 (1960), 183–194MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    J. Cronin, Lyapunov stability and periodic solutions, Bol. Soc. Mat. Mexicana, (1965), 22–27Google Scholar
  19. [19]
    J. Cronin, The point at infinity and periodic solutions, J. Differential Equations, 1 (1965), 156–170MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    J. Cronin, Periodic solutions of some nonlinear differential equations, J. Differential Equations, 3 (1967), 31–46MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    J. Cronin, Periodic solutions of nonautonomous equations, Boll. Un. Mat. Ital., (4) 6 (1972), 45–54MathSciNetMATHGoogle Scholar
  22. [22]
    E.N. Dancer, Boundary value problems for weakly nonlinear ordinary differential equations, Bull. Austral. Math. Soc., 15 (1976), 321–328MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    E.N. Dancer, Symmetries, degree, homotopy indices and asymptotically homogeneous problems, Nonlinear Analysis, TMA, 6 (1982), 667–686MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    K. Deimling, Nonlinear functional analysis, Springer, Berlin, 1985MATHCrossRefGoogle Scholar
  25. [25]
    L. Derwidué, Systèmes différentiels non linéaires ayant des solutions périodiques, Acad. Royale de Belgique, Bull. Cl. des Sciences (5) 49 (1963), 11–32, 82–90; (5) 50 (1964), 928–942, 1130–1142MATHGoogle Scholar
  26. [26]
    L. Derwidué, Etude géométrique d'une équation différentielle non linéaire, Bull. Soc. Royale Sciences Liège 34 (1965), 180–187MATHGoogle Scholar
  27. [27]
    L. Derwidué, Systèmes différentiels non linéaires ayant des solutions uniformément bornées dans le futur, Bull. Soc. Royale Sciences Liège 34 (1965), 555–572MATHGoogle Scholar
  28. [28]
    L. Derwidué, L'équation de Forbat, in Colloque du CBRM sur les équations différentielles non linéaires, leur stabilité et leur périodicité, vander, Louvain, 1970, 7–27Google Scholar
  29. [29]
    T. Ding, R. Iannacci and F. Zanolin, On periodic solutions of sublinear Duffing equation, J. Math. Anal. Appl. 158 (1991), 316–332MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    W.Y. Ding, Generalizations of the Borsuk theorem, J. Math. Anal. Appl. 110 (1985) 553–567MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    C.L. Dolph, Nonlinear integral equations of the Hammerstein type, Trans. Amer. Math. Soc. 66 (1949), 289–307MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    H. Ehrmann. Ueber die Existenz der Lösungen von Randwertaufgaben bei gewöhnlichen nichtlinearen Differentialgleichungen zweiter Ordnung, Math. Ann. 134 (1957), 167–194MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    C. Fabry, J. Mawhin and M. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order differential equations, Bull. London Math. Soc. 18 (1986), 173–180MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    R. Faure, Solutions périodiques d'équations différentielles et méthode de Leray-Schauder (Cas des vibrations forcées), Ann. Inst. Fourier (Grenoble) 14 (1964), 195–204MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    R. Faure, Sur l'application d'un théorème de point fixe à l'existence de solutions périodiques, C.R. Acad. Sci. Paris, 282 (1976), A, 1295–1298MathSciNetMATHGoogle Scholar
  36. [36]
    R. Faure, Solutions périodiques d'équations admettant des pôles: étude par la méthode de Leray Schauder et par un théorème de point fixe, C.R. Acad. Sci. Paris, 283 (1976), A. 481–484MathSciNetMATHGoogle Scholar
  37. [37]
    L. Fernandes and F. Zanolin, Periodic solutions of a second order differential equation with one-sided growth restrictions on the restoring term, Arch. Math. (Basel), 51 (1988), 151–163MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    A. Fonda and P. Habets, Periodic solutions of asymptotically positively homogeneous differential equations, J. Differential Equations, 81 (1989), 68–97MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    A. Fonda and F. Zanolin, Periodic solutions to second order differential equations of Liénard type with jumping nonlinearities, Comment. Math. Univ. Carolin., 28 (1987), 33–41MathSciNetMATHGoogle Scholar
  40. [40]
    N. Forbat and A. Huaux, Détermination approchée et stabilité locale de la solution périodique d'une équation différentielle non linéaire, Mém. et Public. Soc. Sciences, Artts Lettres du Hainaut 76 (1962), 3–13MathSciNetMATHGoogle Scholar
  41. [41]
    S. Fučik, Solvability of nonlinear equations and boundary value problems, D. Reidel Publishing Company, Dordrecht, 1980.MATHGoogle Scholar
  42. [42]
    S. Fučik and V. Lovicar, Periodic solutions of the equation x″+g(x)=p, Casopis Pest. Mat., 100 (1975), 160–175MathSciNetMATHGoogle Scholar
  43. [43]
    M. Furi, M. Martelli and A. Vignoli, On the solvability of nonlinear operator equations in normed spaces, Ann. Mat. Pura Appl. (4) 124 (1980), 321–343MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    M. Furi and M.P. Pera, An elementary approach to boundary value problems at resonance, J. Nonlinear Anal. 4 (1980) 1081–1089MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    M. Furi and M.P. Pera, Co-bifurcating branches of solutions for nonlinear eigenvalue problems in Banach spaces, Annali Mat. Pura Appl. 135 (1983), 122MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    M. Furi and M. P. Pera, A continuation principle for forced oscillations on differentiable manifolds, Pacific J. Math., 121 (1986), 321–338.MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    M. Furi and M.P. Pera, The forced spherical pendulum does have forced oscillations, in Delay Differential Equations and Dynamical Systems (Claremont 1990), Busenberg and Martelli eds, Springer, Berlin, 1991, 176–182CrossRefGoogle Scholar
  48. [48]
    R.E. Gaines and J. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes in Math., 586, Springer-Verlag, Berlin, 1977MATHCrossRefGoogle Scholar
  49. [49]
    K. Geba, A. Granas, T. Kaczynski and W. Krawcewicz, Homotopie et équations non linéaires dans les espaces de Banach, C.R. Acad. Sci. Paris 300, ser. I (1985), 303–306MathSciNetMATHGoogle Scholar
  50. [50]
    R.E. Gomory, Critical points at infinity and forced oscillations, in Contributions to the theory of nonlinear oscillations, 3, Ann. of Math. Studies, 36, Princeton Univ. press, N. J. 1956, pp. 85–126Google Scholar
  51. [51]
    W.B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer, Math. Soc. 204 (1975), 113–135MathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    W.B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math. 99 (1977), 961–971MathSciNetMATHCrossRefGoogle Scholar
  53. [53]
    A. Granas, The Leray-Schauder index and the fixed point theory for arbitrary ANRs, Bull. Soc. Math. France, 100 (1972), 209–228MathSciNetMATHGoogle Scholar
  54. [54]
    P. Habets and L. Sanchez, Periodic solutions of dissipative dynamical systems with singular potentials, J. Differential and Integral Equations, 3 (1990), 1139–1149MathSciNetMATHGoogle Scholar
  55. [55]
    P. Habets and L. Sanchez, Periodic solutions of some Liénard equations with singularities, Proc. Amer. Math. Soc. 109 (1990), 1035–1044MathSciNetMATHGoogle Scholar
  56. [56]
    A. Halanay, În legatura cu metoda parametrolui mic (Relativement à la méthode du petit paramètre), Acad. R. P. R., Bul. St., Sect. Mat. fiz., 6 (1954), 483–488MathSciNetGoogle Scholar
  57. [57]
    A. Halanay, Solutions périodiques des systèmes non-linéaires à petit paramètre, Rend. Accad. Naz. Lincei (Cl. Sci. Fis. Mat. Natur.), 22 (Ser. 8) (1957), 30–32MathSciNetMATHGoogle Scholar
  58. [58]
    A. Halanay, Differential Equations, stability, oscillations, time lags, Academic Press, New-York, London, 1966MATHGoogle Scholar
  59. [59]
    J.K. Hale and A.S. Somolinos, Competition for fluctuating nutrient, J. Math. Biology, 18 (1983), 255–280MathSciNetMATHCrossRefGoogle Scholar
  60. [60]
    A. Huaux, Sur l'existence d'une solution périodique de l'équation différentielle non linéaire x″+0.2x′+x/(1−x)=(0,5) coswt, Bull. Cl. Sciences Acad. R. Belgique (5) 48 (1962), 494–504MathSciNetMATHGoogle Scholar
  61. [61]
    R. Iannacci and M. Martelli, Branches of solutions of nonlinear operator equations in the atypical bifurcation case, preprint.Google Scholar
  62. [62]
    Yu.S. Kolesov, Study of stability of solutions of second-order parabolic equations in the critical case, Math. USSR-Izvestija 3 (1969), 1277–1291MATHCrossRefGoogle Scholar
  63. [63]
    M.A. Krasnosel'skii, The operator of translation along the trajectories of differential equations, Amer. Math. Soc., Providence, R.I., 1968Google Scholar
  64. [64]
    M.A. Krasnosel'skii and P.P. Zabreiko, Geometrical methods of nonlinear Analysis, Springer-Verlag, Berlin, 1984CrossRefGoogle Scholar
  65. [65]
    L. Kronecker. Ueber Systeme von Funktionen mehrerer Variabeln, Monatsber. Berlin Akad. (1869), 159–193Google Scholar
  66. [66]
    B. Laloux and J. Mawhin, Coincidence index and multiplicity, Trans. Amer. Math. Soc. 217 (1976), 143–162MathSciNetMATHCrossRefGoogle Scholar
  67. [67]
    A. Lando, Periodic solutions of nonlinear systems with forcing term, J. Differential Equations, 3 (1971), 262–279MathSciNetMATHCrossRefGoogle Scholar
  68. [68]
    A. Lando, Forced oscillations of two-dimensional nonlinear systems, Applicable Analysis, 28 (1988), 285–295MathSciNetMATHCrossRefGoogle Scholar
  69. [69]
    A. Lasota, Une généralisation du premier théorème de Fredholm et ses applications à la théorie des équations différentielles ordinaires, Ann. Polon. Math., 18 (1966), 65–77MathSciNetMATHGoogle Scholar
  70. [70]
    A. Lasota and Z. Opial, Sur les solutions périodiques des équations différentielles ordinaires, Ann. Polon. Math., 16 (1964), 69–94MathSciNetMATHGoogle Scholar
  71. [71]
    A.C. Lazer and P.J. McKenna, A semi-Fredholm principle for periodically forced systems with homogeneous nonlinearities, Proc. Amer. Math. Soc., 106 (1989), 119–125MathSciNetMATHCrossRefGoogle Scholar
  72. [72]
    A.C. Lazer and P.J. McKenna, On the existence of stable periodic solutions of differential equations of Duffing type, Proc. Amer. Math. Soc. 110 (1990), 125–133MathSciNetMATHCrossRefGoogle Scholar
  73. [73]
    A.C. Lazer and P.J. McKenna, Nonresonance conditions for the existence, uniqueness and stability of periodic solutions of differential equations with a symmetric nonlinearity, Differential and Integral Equations 4 (1991), 719–730MathSciNetMATHGoogle Scholar
  74. [74]
    A.C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc. 99 (1987), 109–114MathSciNetMATHCrossRefGoogle Scholar
  75. [75]
    J. Leray, Les problèmes non linéaires, L'enseignement math. 35 (1936), 139–151MATHGoogle Scholar
  76. [76]
    J. Leray and J. Schauder, Topologie et equations fonctionelles, Ann. Sci. Ecole Norm. Sup. (3) 51 (1934), 45–78MathSciNetMATHGoogle Scholar
  77. [77]
    N.G. Lloyd, Degree theory, Cambridge Univ. Press, Cambridge, 1978MATHGoogle Scholar
  78. [78]
    Y. Long, Multiple solutions of perturbed superquadratic second order Hamiltonian systems, Trans. Amer. Math. Soc. 311 (1989), 749–780MathSciNetMATHCrossRefGoogle Scholar
  79. [79]
    W.S. Loud, Periodic solutions of x″+cx′+g(x)f(t), Mem. Amer. Math. Soc., 31 (1959)Google Scholar
  80. [80]
    J.L. Massera. The existence of periodic solutions of systems of differential equations, Duke Math. J. 17 (1950), 457–475MathSciNetMATHCrossRefGoogle Scholar
  81. [81]
    J. Mawhin, Equations intégrales et solutions périodiques des systèmes différentiels non linéaires. Acad. Roy. Belg. Bull. Cl. Sci., 55 (1969), 934–947MathSciNetMATHGoogle Scholar
  82. [82]
    J. Mawhin, Existence of periodic solutions for higher order differential systems that are not of class D, J. Differential Equations, 8 (1970), 523–530MathSciNetMATHCrossRefGoogle Scholar
  83. [83]
    J. Mawhin, Equations fonctionnelles non linéaires et solutions périodiques, in Equadiff 70, Centre de Recherches Physiques, Marseille, 1970Google Scholar
  84. [84]
    J. Mawhin, Periodic solutions of nonlinear functional differential equations, J. Differential Equations, 10 (1971), 240–261MathSciNetMATHCrossRefGoogle Scholar
  85. [85]
    J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610–636MathSciNetMATHCrossRefGoogle Scholar
  86. [86]
    J. Mawhin, Nonlinear perturbations of Fredholm mappings in normed spaces and applications to differential equations, Trabalho de Mat. 61, Univ. de Brasilia, 1974Google Scholar
  87. [87]
    J. Mawhin, Periodic solutions of some perturbed differential systems, Boll. Un. Mat. Ital., 11 (4) (1975), 299–305MathSciNetMATHGoogle Scholar
  88. [88]
    J. Mawhin, Periodic solutions, Workshop on nonlinear boundary value problems for ordinary differential equations and applications, Trieste, 1977, ICTP SMR/42/1Google Scholar
  89. [89]
    J. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS 40, Amer. Math. Soc., Providence, R.I., 1979MATHCrossRefGoogle Scholar
  90. [90]
    J. Mawhin, Compacité, monotonie et convexité dans l'étude des problèmes aux limites semi linéaires, Sémin. Anal. Moderne, 19, Univ. Sherbrooke, 1981Google Scholar
  91. [91]
    J. Mawhin, Point fixes, point critiques et problems aux limites, Séminaire de Mathématiques Supérieures, vol. 92, Les Presses de l'Université de Montréal, 1985Google Scholar
  92. [92]
    J. Mawhin, Qualitative behavior of the solutions of periodic first order scalar differential equations with strictly convex coercive nonlinearity, in Dynamics of infinite dimensional systems, Chow and Hale eds., Springer, Berlin, 1987, 151–159CrossRefGoogle Scholar
  93. [93]
    J. Mawhin, A simple proof of a semi-Fredholm principle for periodically forced systems with homogeneous nonlinearities, Arch. Math. (Brno), 25 (1989), 235–238MathSciNetMATHGoogle Scholar
  94. [94]
    J. Mawhin, Bifurcation from infinity and nonlinear boundary value problems, in Ordinary and Partial Differential equations, (Dundee 1989), Pitman, 1990, 119–129Google Scholar
  95. [95]
    J. Mawhin and C. Munoz, Application du degré topologique à l'estimation du nombre des solutions périodiques d'équations différentielles, Annali Mat. Pura Appl. (4) 96 (1973), 1–19MathSciNetMATHCrossRefGoogle Scholar
  96. [96]
    J. Mawhin and C. Rybakowski, Continuation theorems for semi-linear equations in Banach spaces: a survey, in Nonlinear Analysis, World Scientific, Singapore, 1987, 367–405Google Scholar
  97. [97]
    J. Mawhin and K. Schmitt, Landesman-Lazer type problems at an eigenvalue of odd multiplicity. Results in Math. 14 (1988), 138–146MathSciNetMATHCrossRefGoogle Scholar
  98. [98]
    J. Mawhin and K. Schmitt, Nonlinear eigenvalue problems with the parameter near resonance. Ann. Polon. Math. 60 (1990), 241–248MathSciNetMATHGoogle Scholar
  99. [99]
    J. Mawhin and J.R. Ward, Periodic solutions of some forced Liénard differential equations at resonance, Arch. Math. (Basel), 41 (1983), 337–351MathSciNetMATHCrossRefGoogle Scholar
  100. [100]
    J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci., vol. 74, Springer, New York, 1989MATHGoogle Scholar
  101. [101]
    G.R. Morris, An infinite class of periodic solutions of x″+2x 3=p(t), Proc. Cambridge Phil. Soc. 61 (1965), 157–164MathSciNetMATHCrossRefGoogle Scholar
  102. [102]
    E. Muhamadiev, Construction of a correct guiding function for a system of differential equations, Soviet Math. Dokl., 11 (1970), 202–205Google Scholar
  103. [103]
    E. Muhamadiev, On the theory of periodic solutions of systems of ordinary differential equations, Soviet Math. Dokl., 11 (1970), 1236–1239MathSciNetGoogle Scholar
  104. [104]
    W. Müller, Ueber die Beschränkheit der Lösungen der Cartwright-Littlewoddschen Gleichung. Math. Nachr. 29 (1965), 25–40MathSciNetCrossRefGoogle Scholar
  105. [105]
    W. Müller, Qualitative Untersuchungen der Lösungen nichtlinearer Differentialgleichungen zweiter Ordnung nach der direkten Methode von Liapounov, Abhandlungen Deutsche Akad. Wiss., Kl. Math. Phys. Techn., Heft 4, Berlin, 1965Google Scholar
  106. [106]
    L. Nirenberg, Comments on nonlinear problems, Le Matematiche (Catania) 36 (1981) 109–119MathSciNetMATHGoogle Scholar
  107. [107]
    R. D. Nussbaum, The fixed point index and some applications, Séminaire de Mathématiques Supérieures, vol. 94, Les Presses de l'Université de Montréal, 1987Google Scholar
  108. [108]
    P. Omari, Gab. Villari and F. Zanolin, Periodic solutions of the Liénard equation with one-sided growth restrictions, J. Differential Equations, 67 (1987), 278–293MathSciNetMATHCrossRefGoogle Scholar
  109. [109]
    P. Omari and F. Zanolin, On forced nonlinear oscillations in n-th order differential systems with geometric conditions, Nonlinear Analysis, TMA, 8 (1984), 723–784MathSciNetMATHCrossRefGoogle Scholar
  110. [110]
    Z. Opial. Sur les solutions périodiques de l'équation différentielle x″+g(x)=p(t), Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 8 (1960), 151–156MathSciNetMATHGoogle Scholar
  111. [111]
    R. Ortega, Stability and index of periodic solutions of an equation of Duffing type, Boll. Un. Mat. Ital. (7) 3-B (1989), 533–546MathSciNetMATHGoogle Scholar
  112. [112]
    R. Ortega, Stability of a periodic problem of Ambrosetti-Prodi type, Differential and Integral Equations, 3 (1990), 275–284MathSciNetMATHGoogle Scholar
  113. [113]
    R. Ortega. Topological degree and stability of periodic solutions for certain differential equations, J. London Math. Soc. (2) 42 (1990), 505–516MathSciNetMATHCrossRefGoogle Scholar
  114. [114]
    R. Ortega. A criterion for asymptotic stability based on topological degree, to appearGoogle Scholar
  115. [115]
    R. Ortega. The first interval of stability of a periodic equation of Duffing type, Proc. Amer. Math. Soc., to appearGoogle Scholar
  116. [116]
    J. Pejsachowicz and A. Vignoli, On the topological coincidence degree for perturbations of Fredholm operators, Boll. Un. Mat. Ital. (5) 17-B (1980), 1457–1466MathSciNetMATHGoogle Scholar
  117. [117]
    V.A. Pliss, Nonlocal problems of the theory of oscillations, Academic Press, New York, 1966MATHGoogle Scholar
  118. [118]
    P.J. Rabier, Topological degree and the theorem of Borsuk for general covariant mappings with applications, Nonlinear Analysis 16 (1991) 399–420MathSciNetMATHCrossRefGoogle Scholar
  119. [119]
    P. Rabinowitz. On bifurcation from infinity, J. Differential Equations 14 (1973), 462–475MathSciNetMATHCrossRefGoogle Scholar
  120. [120]
    P. Rabinowitz. Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc. 272 (1982), 753–769MathSciNetMATHCrossRefGoogle Scholar
  121. [121]
    R. Reissig, Periodic solutions of a nonlinear n-th order vector differential equation, Ann. Mat. Pura Appl., (4) 87 (1970), 111–123MathSciNetMATHCrossRefGoogle Scholar
  122. [122]
    R. Reissig, G. Sansone and R. Conti, Qualitative Theorie nichtlinearer Differentialgleichungen, Cremonese, Roma, 1963MATHGoogle Scholar
  123. [123]
    R. Reissig, G. Sansone and R. Conti, Non-linear Differential Equations of Higher Order, Noordhoff, Leyden, 1974MATHGoogle Scholar
  124. [124]
    N. Rouche and J. Mawhin, Ordinary differential equations, Pitman, London, 1980MATHGoogle Scholar
  125. [125]
    J. Schauder, Der Fixpunktsatz in Funktionalraümen Studia Math. 2 (1930), 171–180Google Scholar
  126. [126]
    K. Schmitt, Periodic solutions of small period of systems of n-th order differential equations, Proc. Amer. Math. Soc., 36 (1972), 459–463MathSciNetGoogle Scholar
  127. [127]
    R.A. Smith, Massera's convergence theorem for periodic nonlinear differential equations, J. Math. Anal. Appl. 120 (1986), 679–708MathSciNetMATHCrossRefGoogle Scholar
  128. [128]
    S. Solimini, On forced dynamical systems with a singularity of repulsive type, J. Nonlinear Analysis 14 (1990), 489–500MathSciNetMATHCrossRefGoogle Scholar
  129. [129]
    R. Srzednicki, On rest points of dynamical systems, Fund. Math., 126 (1985), 69–81MathSciNetMATHGoogle Scholar
  130. [130]
    R. Srzednicki, Periodic and constant solutions via topological principle of Wažewski, Acta Math. Univ. Iag., 26 (1987), 183–190MathSciNetMATHGoogle Scholar
  131. [131]
    H. Steinlein, Borsuk's antipodal theorem and its generalizations and applications: a survey, in Méth. Topologiques en Analyse Non-Linéaire, Granas ed., Sémin. Math. Sup. n 95, Montréal, 1985, 166–235Google Scholar
  132. [132]
    F. Stoppelli, Su un'equazione differenziale della meccanica dei fili, Rend. Accad. Sci. Fis. Mat. Napoli, 19 (1952), 109–114MathSciNetMATHGoogle Scholar
  133. [133]
    M. Struwe, Multiple solutions of anticoercive boundary value problems for a class of ordinary differential equations of the second order, J. Differential Equations 37 (1980), 285–295MathSciNetMATHCrossRefGoogle Scholar
  134. [134]
    M. Urabe, Nonlinear autonomous oscillations. Analytical theory, Academic Press, New York, 1967MATHGoogle Scholar
  135. [135]
    G. Villari, Soluzioni periodiche di una classe di equazioni differenziali, Ann. Mat. Pura Appl. (4) 73 (1966), 103–110MathSciNetMATHCrossRefGoogle Scholar
  136. [136]
    P. Volkmann, Zur Definition des Koinzidenzgrades, preprint, 1981Google Scholar
  137. [137]
    P. Volkmann, Démonstration d'un théorème de coincidence par la méthode de Granas, Bull. Soc. Math. Belgique, B 36 (1984), 235–242MATHGoogle Scholar
  138. [138]
    Z.Q. Wang: Symmetries and the calculations of degree, Chinese Ann. of Math. 108 (1989) 520–536MathSciNetMATHGoogle Scholar
  139. [139]
    J.R. Ward, Asymptotic conditions for periodic solutions of ordinary differential equations, Proc. Amer. Math. Soc. 81 (1981), 415–420MathSciNetMATHCrossRefGoogle Scholar
  140. [140]
    J.R. Ward, Conley index and non-autonomous ordinary differential equations, Results in Mathematics, 14 (1988), 191–209MathSciNetMATHCrossRefGoogle Scholar
  141. [141]
    E. Zeidler, Nonlinear functional analysis and its applications, vol. I, Springer, New York, 1986MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • J. Mawhin
    • 1
  1. 1.Institut mathématiqueUniversité de LouvainLouvain-la-NeuveBelgium

Personalised recommendations