Definable functions on degrees

  • Theodore A. Slaman
  • John R. Steel
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1333)


Linear Order Choice Function Invariant Function Order Type Winning Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Becker, Pointclass jumps, to appear.Google Scholar
  2. [2]
    C. Jockusch and R. Shore, REA operators, r.e. degrees, and minimal covers, Proc. of Symposia in Pure Math. of the AMS, v. 42, 1985, pp. 33–11.MathSciNetGoogle Scholar
  3. [3]
    A. H. Lachlan, Uniform enumeration operations, JSL v. 40, 1975, pp. 401–409.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    D. A. Martin, The axiom of determinacy and reduction principles in the analytic hierarchy, Bull. Amer. Math. Soc. v. 74, 1968, pp. 687–689.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. P. Miller, High recursively enumerable degrees and the anti-cupping property, Logic year 1979–80, Springer Lecture notes in Math., v. 859.Google Scholar
  6. [6]
    D. Posner and R. W. Robinson, Degrees joining to 0', JSL v. 46, 1981, pp. 714–722.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    G. E. Sacks, On a theorem of Lachlan and Martin, Proc. Amer. Math. Soc. v.18, 1967, pp. 140–141.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    G. E. Sacks, Degrees of unsolvability, Ann. Math. Studies, v.55 1966, Princeton Univ. Princeton, N.J.Google Scholar
  9. [9]
    T. A. Slaman and J. R. Steel, Complementation in the Turing degrees, to appear.Google Scholar
  10. [10]
    T. A. Slaman and J. R. Steel, A construction degree invariant below 0', to appear.Google Scholar
  11. [11]
    J. R. Steel, A classification of jump operators, JSL v.47, 1982, pp. 347–358.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Theodore A. Slaman
    • 1
  • John R. Steel
    • 2
  1. 1.Department of MathematicsUniversity of ChicagoChicago
  2. 2.Department of MathematicsUniversity of CaliforniaLos Angeles

Personalised recommendations