Examples of lack of rigidity in crystallographic groups

  • Frank Connolly
  • Tadeusz Koźniewski
Geometry Of Manifolds
Part of the Lecture Notes in Mathematics book series (LNM, volume 1474)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    Bass, H.:Algebraic K-Theory. New York: W.A.Benjamin Inc., 1968MATHGoogle Scholar
  2. [BM]
    Bass, H., Murthy, P.: Grothendieck groups and Picard groups of Abelian group rings. Annals of Math.(2)86,16–73 (1967)MathSciNetCrossRefMATHGoogle Scholar
  3. [C]
    Carter, D.: Lower K-theory of finite groups. Comm. Algebra 8 1927–1937 (1980)MathSciNetCrossRefMATHGoogle Scholar
  4. [CdaS]
    Connolly, F., daSilva, M.:N i K 0(Zπ) is a finitely generated ZN i module for any finite group π. (to appear)Google Scholar
  5. [CK1]
    Connolly, F., Koźniewski, T.: Finiteness properties of classifying spaces of proper Γ actions. Journal of Pure and Applied Algebra 41, 17–36 (1986)MathSciNetCrossRefMATHGoogle Scholar
  6. [CK2]
    Connolly, F., Koźniewski, T.:Rigidity and Crystallographic Groups, I. Inventiones Math.99 25–49 (1990)MathSciNetCrossRefMATHGoogle Scholar
  7. [CK3]
    Connolly, F., Koźniewski, T.:Rigidity and Crystallographic Groups, II. (in preparation)Google Scholar
  8. [CL]
    Connolly, F., Lück, W.: The involution on the Equivariant Whitehead Group. Journal of K-Theory,(to appear, 1990)Google Scholar
  9. [F]
    Farrell, F.T.:The obstruction to fibering a manifold over a circle. Indiana Univ. Math. J. 21,3125–346 (1971)MathSciNetCrossRefMATHGoogle Scholar
  10. [FH1]
    Farrell, F.T., Hsiang, W.C.: A formula for K 1(R α[T]). Proc. Symp. Pure Math. vol. 17 (1970)Google Scholar
  11. [FH2]
    Farrell, F.T., Hsiang, W.C.: Topological Characterization of flat and almost flat manifolds, M n, n ≠ 3, 4. Amer. Jour. Math.105,641–672 (1983)MathSciNetCrossRefMATHGoogle Scholar
  12. [HS]
    Hsiang, W.C., Shaneson, J.: Fake Tori. In: Topology of Manifolds. Chicago, Markham 1970 pp. 18–51Google Scholar
  13. [M]
    Milnor, J.W.: Whitehead Torsion. Bulletin of the Amer. Math. Soc. 72, 358–426 (1966)MathSciNetCrossRefMATHGoogle Scholar
  14. [Q1]
    Quinn, F.: Ends of maps II. Inventiones Math.68,353–424 (1982)MathSciNetCrossRefMATHGoogle Scholar
  15. [Q2]
    Quinn, F.: Algebraic K-theory of poly-(finite or cyclic) groups, Bulletin of the Amer. Math. Soc. 12, 221–226 (1985).MathSciNetCrossRefMATHGoogle Scholar
  16. [St]
    Steinberger, M.: The equivariant topological s-cobordism theorem. Inventiones Math. 91, 61–104 (1988)MathSciNetCrossRefMATHGoogle Scholar
  17. [StW]
    Steinberger, M., West, J.:Equivariant h-cobordisms and finiteness obstructions. Bulletin of the Amer. Math. Soc. 12, 217–220 (1985)MathSciNetCrossRefMATHGoogle Scholar
  18. [Sw]
    Swan, R.: The Grothendieck ring of a finite group. Topology 2, 85–110 (1963)MathSciNetCrossRefMATHGoogle Scholar
  19. [Ts]
    Tsapogas, G.: On the K-theory of crystallographic groups, Ph.D. dissertation, University of Notre Dame, 1990.Google Scholar
  20. [W]
    Weinberger, S.: Private communicationGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Frank Connolly
    • 1
  • Tadeusz Koźniewski
    • 2
  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA
  2. 2.Instytut MatematykiWarsaw UniversityWarszawaPoland

Personalised recommendations