Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via BdR. Part I

  • Kazuya Kato
Part of the Lecture Notes in Mathematics book series (LNM, volume 1553)


Zeta Function Abelian Variety Galois Cohomology Main Conjecture Ideal Class Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Be1]
    Beilinson, A., Higher regulators and values of L-functions, J. Soviet Math. 30 (1985) 2036–2070.CrossRefzbMATHGoogle Scholar
  2. [Be2]
    Beilinson, A., Polylogarithm and cyclotomic elements, preprint.Google Scholar
  3. [Bl]
    Bloch, S., Lectures on algebraic cycles, Duke Univ. Math. Series (1980).Google Scholar
  4. [BK]
    Bloch, S. and Kato, K., L-functions and Tamagawa numbers motives, in The Grothendieck Festscherift, Vol. 1 (1980) 334–400.zbMATHGoogle Scholar
  5. [Bo]
    Borel, A., Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235–272.MathSciNetzbMATHGoogle Scholar
  6. [CP]
    Coates, J. and Perrin-Riou, B., On p-adic L-functions attached to motives over Q, in Advanced Studies in Pure Math. 17 (1989) 23–54.MathSciNetzbMATHGoogle Scholar
  7. [CW]
    Coates J. and Wiles, A., On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977) 223–251.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Co]
    Coleman, R., Division values in local fields, Inv. Math. 53 (1979) 91–116.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Da]
    Damerell, R. M., L-functions of elliptic curves with complex multiplication, I. Acta Arith. 17 (1970) 287–301, II, ibid. 19 (1971) 311–317.MathSciNetzbMATHGoogle Scholar
  10. [De1]
    Deligne, P., Théorie de Hodge II, Publ. Math. IHES 40 (1972) 5–57.CrossRefzbMATHGoogle Scholar
  11. [De2]
    Deligne, P., Théorème de finitude en cohomologie l-adique, in Lecture Notes in Math. 569 (SAG 4½), Springer (1977) 233–261.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [De3]
    Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., vol. 33, Part 2, AMS (1979) 313–349.Google Scholar
  13. [De4]
    Deligne, P., La conjecture de Weil II, Publ. Math. IHES 52 (1981).Google Scholar
  14. [De5]
    Deligne, P., Le groupe fondamental de la droite projective moins trois points, in Galois groups over Q. Springer (1989) 79–298.Google Scholar
  15. [dS1]
    de Shalit, E., The explicit reciprocity law in local class field theory, Duke Math. J. (1986) 163–176.Google Scholar
  16. [dS2]
    de Shalit, E., Iwasawa theory of elliptic curves with complex multiplication, Academic Press (1987).Google Scholar
  17. [dS3]
    de Shalit, E., The explicit reciprocity law of Bloch and Kato, preprint.Google Scholar
  18. [Fa]
    Faltings, G., Crystalline cohomology and p-adic Galois representations, in Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins Univ. (1989) 25–80.Google Scholar
  19. [Fo1]
    Fontaine, J.-M., Sur certains types de représentations p-adiques du groupe de Galois d'un corps local: construction d'un anneau de Barsotti-Tate, Ann. of Math. 115 (1982) 547–608.MathSciNetCrossRefGoogle Scholar
  20. [Fo2]
    Fontaine, J.-M., Formes différentielles et modules de Tate des variétés abeliennes sur les corps locaux, Invent. Math. 65 (1982) 379–409.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Fo3]
    Fontaine, J.-M., Cohomologie crystalline et représentations p-adiques, in Lecture Notes in Math. 1016, Springer (1983) 86–108.Google Scholar
  22. [FM]
    Fontaine, J.-M. and Messing, W., p-adic periods and p-adic étale cohomology, Contemporary Math. 67 (1987) 179–207.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [FP1]
    Fontaine, J.-M. and Perrin-Riou, B., Autour des conjectures de Bloch et Kato, I. C. R. Acad. Sci. Paris, t. 313, Série I (1991) 189–196, II, ibid., 349–356, III, ibid., 421–428.MathSciNetzbMATHGoogle Scholar
  24. [FP2]
    Fontaine, J.-M. and Perrin-Riou, B., Autour des conjectures de Bloch et Kato, cohomologie galoisienne et valeurs de fonctions L, preprint.Google Scholar
  25. [Gr]
    Grothendieck, A., Formule de Lefschetz et rationalité des fonctions L, in Sém. Bourbaki, vol. 1965/66, Benjamin (1966) exposé 306Google Scholar
  26. [11]
    Illusie, L., Cohomologie de de Rham et cohomologie étale p-adique (Sém. Bourbaki exposé 726), in Astérisque (1990) 325–374.Google Scholar
  27. [Ja]
    Jannsen, U., On the l-adic cohomology of varieties over number fields and its Galois cohomology, in Galois groups over Q, Springer (1989) 315–360.Google Scholar
  28. [Ka1]
    Kato, K., The explicit reciprocity law and the cohomology of Fontaine-Messing, Bull. Soc. Math. France 119 (1991) 397–441.MathSciNetzbMATHGoogle Scholar
  29. [Ka2]
    Kato, K., Iwasawa theory and p-adic Hodge theory, preprint.Google Scholar
  30. [Ka3]
    Kato, K., in preparation.Google Scholar
  31. [Ki]
    Kinoshita, J., The twilight-crane (1949). (A drama basing on a Japanese legend.)Google Scholar
  32. [KM]
    Knudsen, F. and Mumford, D., The projectivity of the moduli space of stable curves I, Math. Scand. 39, 1 (1976) 19–55.MathSciNetzbMATHGoogle Scholar
  33. [Ko]
    Kolyvagin, V. A., Euler systems, The Grothendieck Festschrift, vol. 2, Birkhaüser (1990) 435–483.MathSciNetGoogle Scholar
  34. [Ma]
    Mazur, B., Notes on the étale cohomology of number fields, Ann. Sci. Ec. Norm. Sup. 6 (1973) 521–556.MathSciNetzbMATHGoogle Scholar
  35. [MW]
    Mazur, B and Wiles, A., Class fields of abelian extensions of Q, Invent. Math. 76 (1984) 179–330.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [Mi]
    Miyazawa K. (a Japanese poet), A night on the galaxy train (written around 1924).Google Scholar
  37. [Qu]
    Quillen, D., Higher algebraic K-theory, I., in Lecture Notes in Math. 341, Springer (1973) 85–147.Google Scholar
  38. [Ra]
    Rapoport, M., Schappacher, N. and Schneider, P. (ed.), Beilinson's conjectures on special values of L-functions, Academic Press (1988).Google Scholar
  39. [Ru]
    Rubin, K., The "main conjectures" of Iwasawa theory for imaginary quadratic fields, Invent. math. 103 (1991) 25–68.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [Se]
    Serre, J.-P., Cohomologie Galoisienne, Lecture Notes in Math. 5, Springer (1965).Google Scholar
  41. [So1]
    Soulé, C., K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979) 251–295.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [So2]
    Soulé, C., On higher p-adic regulators, in Lecture Notes in Math. 854, Springer (1981) 371–401.Google Scholar
  43. [So3]
    Soulé, C., The rank of étale cohomology of varieties over p-adic or number fields, Comp. Math. 53 (1984) 113–131.zbMATHGoogle Scholar
  44. [So4]
    Soulé, C., p-adic K-theory of elliptic curves, Duke Math. J. 54 (1987) 249–269.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [Ta1]
    Tate, J., On the conjecture of Birch and Swinnerton-Dyer and a geometric analog, in Sém. Bourbaki, vol. 1965/66, Benjamin (1966) exposé 306.Google Scholar
  46. [Ta2]
    Tate, J., p-divisible groups, Proceedings of a conference on local fields, Driebergen, 1966, Springer (1967) 158–183.Google Scholar
  47. [Wa]
    Washington, L. C., Introduction to cyclotomic fields, Springer (1982).Google Scholar
  48. [We1]
    Weil, A., Elliptic functions according to Eisenstein and Kronecker, Springer (1976).Google Scholar
  49. [We2]
    Weil, A., Number theory: An approach through history; From Hammurapi to Legendre, Birkhäuser (1983).Google Scholar
  50. [Wi1]
    Wiles, A., Higher explicit reciprocity laws, Ann. Math. 107 (1978) 235–254.MathSciNetCrossRefzbMATHGoogle Scholar
  51. [Wi2]
    Wiles, A., The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990) 493–540.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [Wo]
    Wolfgang, K. S., λ-rings and Adams operators in algebraic K-theory, included in [Ra], 93–102.Google Scholar
  53. [SGA4]
    Artin, M. and Grothendieck, and Verdier, J. L., Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Springer (1972/73).Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Kazuya Kato

There are no affiliations available

Personalised recommendations