Introduction to Maslov's operational method (non-commutative analysis and differential equations)

  • V. E. Nazaikinskii
  • B. Yu. Sternin
  • V. E. Shatalov
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1520)


Integral Operator Pseudodifferential Operator Inverse Operator Poisson Algebra Fourier Integral Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.P. Maslov, Operational methods, Nauka, Moscow, 1973.Google Scholar
  2. 2.
    V.P. Maslov, Asymptotic methods of solution of pseudodifferential equations, Nauka, Moscow, 1987.Google Scholar
  3. 3.
    V.P. Maslov and V.E. Nazaikinskii, Asymptotics of operator and pseudo-differential equations, Consultants Bureau, New York, 1988.zbMATHGoogle Scholar
  4. 4.
    M.V. Karasev and V.P. Maslov, Global asymptotic operators of regular representation, Dokl. Acad. Nauk SSSR 257 (1) (1981), 33–38.MathSciNetzbMATHGoogle Scholar
  5. 5.
    R.P. Feynman, An operator calculus having applications in quantum electrodynamics, Phys. Rev. 84 (2) (1951), 108–128.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    V.E. Nazaikinskii, V.G. Oshmjan, B.Yu. Sternin and V.E. Shatalov, Fourier integral operators and canonical operator, Uspekhi Mat. Nauk 36 (2) (1981), 81–140.MathSciNetGoogle Scholar
  7. 7.
    Yu.L. Daletskii and S.G. Krein, A formula for differentiating with respect to parameter of functions of Hermitian operators, Dokl. Acad. Nauk SSSR 76 (1) (1951), 13–66.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • V. E. Nazaikinskii
    • 1
  • B. Yu. Sternin
    • 1
  • V. E. Shatalov
    • 1
  1. 1.Department of Applied MathematicsMoscow Institute of Electronic EngineeringMoscowUSSR

Personalised recommendations