Advertisement

Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform

  • Pierre Grangeat
Medical Imaging Techniques
Part of the Lecture Notes in Mathematics book series (LNM, volume 1497)

Abstract

Either for medical imaging or for non destructive testing, X-ray provides a very accurate mean to investigate internal structures. The object is described by a 3D map f of the local density. The use of a 2D X-ray detector like an image intensifier in front of the ponctual X-ray source defines a cone beam geometry. When the source moves along a curve, the acquisition measurements are modelized by the cone beam X-ray transform of the function f. This same model can be applied to emission tomography when cone beam collimators are used.

The aim of the 3D reconstruction is to recover the original function f. We have established an exact formula between the cone beam X-ray transform and the first derivative of the 3D Radon transform. We propose to use the planes as information vectors to achieve the rebinning from the coordinates system linked to the cone beam geometry, to the spherical coordinates system of the Radon domain. Then the reconstruction diagram is to compute and to invert the first derivative of the 3D Radon transform.

In this publication, we describe the mathematical framework of this reconstruction diagram. We emphasize the special case of the circular acquisition trajectory.

Key-words

Cone beam Three-dimensional reconstruction Radon transform X-ray Transmission tomography Gamma-ray Emission tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CAQUINEAU C., AMANS J.L. (1990a). “A processor architecture for the image and volume reconstruction”. ICASSP 1990, Session M1, M1.3, 1849–1852.Google Scholar
  2. CAQUINEAU C. (1990b). Architecture de processeurs pour la reconstruction d'images et de volumes à partir de projections. Thèse de doctorat. Université de Technologie de Compiègne.Google Scholar
  3. FELDKAMP L.A., DAVIS L.C., KRESS J.W. (1984). “Practical cone-beam algorithm”. J. Opt. Soc. Am., 1 (6), 612–619.CrossRefGoogle Scholar
  4. FINCH D.V., SOLMON D.C. (1980). “Stability and consistency for the divergent beam X-ray transform” in HERMAN G.T., NATTERER F., Mathematical Aspects of Computerized Tomography, 100–111, Springer-Verlag.Google Scholar
  5. FINCH D.V., SOLMON D.C. (1983). “A characterization of the range of the divergent beam X-ray transform”. SIAM J. Math. Anal., 14 (4), 767–771.CrossRefGoogle Scholar
  6. FINCH D.V. (1985). “Cone beam reconstruction with sources on a curve”. SIAM J. Appl. Math., 45 (4), 665–673.CrossRefGoogle Scholar
  7. GRANGEAT P. (1984). “Theoretical background of the cone-beam reconstruction algorithm”. Private communication with D. FINCH and D. SOLMON, published in GRANGEAT P. (1987). Analyse d'un Système d'Imagerie 3D par Reconstruction à partir de Radiographies X en Géométrie Conique. Thèse de doctorat. Ecole Nationale Supérieure des Télécommunications.Google Scholar
  8. GRANGEAT P. (1985). “3D reconstruction for diverging X-ray beams”. Computer Assisted Radiology (Berlin), CAR'85, 59–64, Springer-Verlag.Google Scholar
  9. GRANGEAT P. (1986a). “Description of a 3D reconstruction algorithm for diverging X-ray beams”. Biostereometrics 85, A.M. Coblentz, R.E. Heron ed, proc. SPIE-602, 92–108.Google Scholar
  10. GRANGEAT P. (1986b). “Voludensitométrie: optimisation du calcul de la transformée de Radon 3D à partir de radiographies X en géométrie conique”, Deuxième Colloque Image (Nice), CESTA, 512–516.Google Scholar
  11. GRANGEAT P. (1986c). “An analysis of the divergent beam X-ray transform based on the 3D Radon transform”. Communication at the siminar organized by HERMAN G.T. and NATTERER F. at the Mathematisches Forschungsinstitut Oberwolfach: Theory and Application of Radon transforms.Google Scholar
  12. GRANGEAT P. (1987a). “Procédé et dispositif d'imagerie tridimensionnelle à partir de mesures bidimensionnelles de l'atténuation”. French patent no 8777 07134. European patent (1988) no 88 401234.5, publication no EP 0292 402 A1.Google Scholar
  13. GRANGEAT P. (1987b). Analyse d'un Système d'Imagerie 3D par Reconstruction à partir de Radiographies X en Géométrie Conique. Thèse de doctorat. Ecole Nationale Supérieure des Télécommunications.Google Scholar
  14. GRANGEAT P. (1989). TRIDIMOS: Imagerie 3D de la minéralisation des vertèbres lombaires. Rapport final contrat CNES-LETI no 853/CNES/89/5849/00 (référence CEA: no GR 771.576).Google Scholar
  15. GRANGEAT P., HATCHADOURIAN G., LE MASSON P., SIRE P. (1990a). Logiciel Radon: Notice descriptive des algorithmes et des programmes. Note technique LETI no 1546.Google Scholar
  16. GRANGEAT P., LE MASSON P., MELENNEC P., SIRE P. (1990b). “3D cone beam reconstruction”. Communication at the seminar organized by HERMAN G.T., LOUIS A.K., NATTERER F., at the Matematisches Forschungsinstitut Oberwolfach: Mathematical Methods in Tomography.Google Scholar
  17. GRANGEAT P. (1990c). “Reconstruire les structures tridimensionnelles internes de l'organisme humain”. Submitted to Le Courrier du CNRS.Google Scholar
  18. GULLBERG G.T., ZENG G.L., CHRISTIAN P.E., TSUI B.M.W., MORGAN H.T. (1989). “Single photon emission computed tomography of the heart using cone beam geometry and non circular detector rotation”. In Information Processing in Medical Imaging, XI th IPMI International conference, Berkeley, CA.Google Scholar
  19. HAMAKER C., SMITH K.T., SOLMON D.C., WAGNER S.L. (1980). “The divergent beam X-ray transform”. Rocky Mount. J. of Math., 10 (1), 253–283.CrossRefGoogle Scholar
  20. JACQUET I. (1988). Reconstruction d'Image 3D par l'Algorithme Eventail Généralisé. Mémoire de Diplôme d'Ingénieur. Conservatoire National des Arts et Métiers.Google Scholar
  21. JASZCZAK R.J., GREER K.L., COLEMAN R.E. (1988). “SPECT using a specially designed cone beam collimator”. J. Nucl. Med., 29, 1398–1405.PubMedGoogle Scholar
  22. JOSEPH P.M. (1982). “An improved algorithm for reprojecting rays through pixel images”. IEEE Trans. on Med. Imag., MI-1 (3), 192–196.CrossRefGoogle Scholar
  23. KIRILLOV A.A. (1961). “On a problem of I.M. Gel' fand”. Soviet Math. Dokl., 2, 268–269.Google Scholar
  24. KUDO H., SAITO T. (1989a). “3-D tomographic image reconstruction from incomplete cone beam projections”. In Proc. Topical Meeting OSA, Signal Recovery and Synthesis, Cape Code, USA, 170–173.Google Scholar
  25. KUDO H., SAITO T. (1989b). “Feasible cone beam scanning methods for exact 3-D tomographic image reconstruction”. In Proc. Topical Meeting OSA, Signal Recovery and Synthesis, Cape Code, USA, 174–177.Google Scholar
  26. LOUIS A.K. (1983). “Approximate inversion of the 3D Radon transform”. Math. Meth. in the Appl. Sci., 5, 176–185.CrossRefGoogle Scholar
  27. MANGLOS S.H., BASSANO D.A., DUXBURY C.E., CAPONE R.B. (1990). “Attenuation maps for SPECT determined using cone beam transmission computed tomography”. IEEE Trans. on Nucl. Sci., NS-37 (2), 600–608.CrossRefGoogle Scholar
  28. MARR R.B., CHEN C., LAUTERBUR P.C. (1980). “On two approaches to 3D reconstruction in NMR zeugmatography” in HERMAN G.T. and NATTERER F., Mathematical Aspects of Computerized Tomography, 225–240, Springer-Verlag.Google Scholar
  29. MINERBO G.N. (1979). “Convolution reconstruction from cone-beam projection data”. IEEE Trans. Nucl. Sci., NS-26 (2), 2682–2684.CrossRefGoogle Scholar
  30. MORTON E.J., WEBB S., BATEMAN J.E., CLARKE L.J., SHELTON C.G. (1990). “Three-dimensional X-ray microtomography for medical and biological applications”. Phys. Med. Biol., 35 (7), 805–820.PubMedCrossRefGoogle Scholar
  31. NATTERER F. (1986). The Mathematics of Computerized Tomography. Wiley/Teubner.Google Scholar
  32. RIZO Ph., GRANGEAT P. (1989). “Development of a 3D cone beam tomographic system for NDT of ceramics”. In Topical Proceedings of the ASNT: Industrial Computerized Tomography, Seattle, July 25–27, 24–28.Google Scholar
  33. RIZO Ph., ELLINGSON W.A. (1990a). “An initial comparison between two 3D X-ray CT algorithms for characterizing ceramic materials”. Proc. of the conference on Non Destructive Evaluation of Modern Ceramics, Columbus, Ohio, July 9–12.Google Scholar
  34. RIZO Ph., GRANGEAT P., SIRE P., LE MASSON P., MELENNEC P. (1990b). “Comparison of two 3D cone beam reconstruction algorithm with a circular source trajectory”. Submitted to J. Opt. Soc. Am.Google Scholar
  35. RIZO Ph., GRANGEAT P., SIRE P., LE MASSON P., DELAGENIERE S. (1990c). “Cone beam 3D reconstruction with a double circular trajectory”. Communication at the 1990 Fall Meeting of the Material Research Society, Boston.Google Scholar
  36. ROBB R.A. (1985). “X-ray Computed Tomography: Advanced Systems in Biomedical Research” in ROBB R.A. (1985), Three Dimensional Biomedical Imaging, CRC Press, Volume I, Chapter 5, 107–164.Google Scholar
  37. SAINT-FELIX D., TROUSSET Y., PICARD C., ROUGEE A. (1990). “3D reconstruction of high contrast objects using a multi-scale detection/estimation scheme” in HÖHNE K.H., FUCHS H., PIZER S., 3D Imaging in Medicine: Algorithms, Systems, Applications, NATO ASI Series, Springer-Verlag, Series F, Vol. 60, 147–158.Google Scholar
  38. SIRE P., GRANGEAT P., LE MASSON P., MELENNEC P., RIZO Ph. (1990). “NDT applications of the 3D Radon transform algorithm for cone beam reconstruction”. Communication at the 1990 Fall Meeting of the Material Research Society, Boston.Google Scholar
  39. SMITH B.D. (1985). “Image reconstruction from cone-beam projections: necessary and sufficient conditions and reconstruction methods”. IEEE Trans. on Med. Imag., MI-4 (1) 14–25CrossRefGoogle Scholar
  40. SMITH B.D. (1987). Computer-aided tomographic imaging from cone-beam data. Ph. D. dissertation. University of Rhode Island.Google Scholar
  41. SMITH B.D. (1990). “Cone-beam tomography: recent advances and a tutorial review”. Optical Engineering, 29 (5), 525–534.CrossRefGoogle Scholar
  42. TUY H.K. (1983). “An inversion formula for cone-beam reconstruction”. SIAM J. Appl. Math., 43 (3), 546–552.CrossRefGoogle Scholar
  43. VICKERS D., COX W., Mc CROSKEY W., KOHRS B., ZAHN R., CARLSON R. (1989). “A revolutionary approach to industrial CT using cone-beam reconstruction”. In Topical Proceedings of the ASNT: Industrial Computerized Tomography, Seattle, July 25–27, 39–45.Google Scholar
  44. WEBB S., SUTCLIFFE J., BURKINSHAWL, HORSMAN A. (1987). “Tomographic reconstruction from experimentaly obtained cone-beam projections”. IEEE Trans. on Med. Imag., MI-6 (1), 67–73.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Pierre Grangeat
    • 1
  1. 1.LETI - Département Systèmes - SETIACentre d'Etudes Nucléaires de GrenobleGrenoble CedexFrance

Personalised recommendations