Advertisement

Strong stacks and classifying spaces

  • André Joyal
  • Myles Tierney
Part I
Part of the Lecture Notes in Mathematics book series (LNM, volume 1488)

Keywords

Isomorphism Class Weak Equivalence Homotopy Category Lift Property Injective Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Barr, Toposes without points, J. Pure App. Alg. 5, 1974, pp 265–280.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Bunge, Stack completions and Morita equivalence for categories in a topos, Cahiers Top. Geom. Diff. xx-4, 1979, pp 401–435.MathSciNetzbMATHGoogle Scholar
  3. [3]
    M. Bunge and R. Pare, Stacks and equivalence of indexed categories, Cahiers Top. Geom. Diff. xx-4, 1979, pp 373–399.MathSciNetzbMATHGoogle Scholar
  4. [4]
    J. Giraud, Cohomologie non abélienne, Grundlehren #179, Springer Verlag, 1971.Google Scholar
  5. [5]
    P. T. Johnstone, Topos Theory, L.M.S. Monographs #10, Academic Press, London, 1977.zbMATHGoogle Scholar
  6. [6]
    A. Joyal, Homotopy theory of simplicial sheaves, to appear.Google Scholar
  7. [7]
    A. Joyal and M. Tierney, An extension of the galois theory of Grothendieck, Memoirs of the AMS vol. 51 No. 309, 1984Google Scholar
  8. [8]
    _____, Classifying spaces for sheaves of simplicial groupoids, JPAA, to appear.Google Scholar
  9. [9]
    J. P. May, Simplicial Objects in Algebraic Topology, Van Nostrand Math.Studies #11, 1967.Google Scholar
  10. [10]
    D. G. Quillen, Homotopical Algebra, Springer Lecture Notes in Mathematics #43, 1967.Google Scholar
  11. [11]
    _____, Rational homotopy theory, Annals of Math.90, 1969, pp205–295.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • André Joyal
    • 1
  • Myles Tierney
    • 2
  1. 1.Département de mathématiquesUQAMMontréalCanada
  2. 2.Department of MathematicsRutgers UniversityNew Brunswick

Personalised recommendations