Multiple-point formulas II: The Hilbert scheme

  • Steven L. Kleiman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1436)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. B. Altman and S. L. Kleiman, Compactifying the Picard Scheme, Adv. Math. 35 (1980), 50–112.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S. Colley, Enumerating stationary multiple-points, Adv. Math. 66 (1987), 149–170.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    A. Grothendieck and J. Dieudonné, “Eléments de Géométrie Algebrique I,” Grundlehren der Math. Wissenschaften 166, Springer, 1971.Google Scholar
  5. [5]
    R. J. Herbert, “Multiple points of immersed manifolds,” Thesis, Univ. of Minnesota (1975), Mem. Amer. Math. Soc. 250, 1981.Google Scholar
  6. [6]
    S. Katz, Iteration of multiple point formulas and applications to conics, in “Algebraic Geometry-Sundance, 1986,” A. Holme, R. Speiser, Eds. Lecture Notes in Math. 1311, Springer, 1988, pp. 147–155.Google Scholar
  7. [7]
    S. L. Kleiman, The enumerative theory of singularities, “Real and Complex singularities,” (Proc. Conf., Oslo 1976), P. Holm, Ed., Sitjhoff & Noorhoof, 1977, pp. 297–396.Google Scholar
  8. [8]
    S. L. Kleiman, Multiple-point Formulas I: Iteration, Acta Math. 147 (1981), 13–49.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S. L. Kleiman, Multiple-point formulas for maps, in “Enumerative and classical Algebraic Geometry,” (Proc. Conf., Nice, 1981), P. Le Barz, Y. Hervier, Eds., Prog. Math. 24, Birkhäuser, 1982, pp. 237–252.MathSciNetMATHGoogle Scholar
  10. [10]
    S. L. Kleiman, Plane forms and multiple point formulas, in “Algebraic Threefolds,” (Proc. Conf., Varenna, 1981), A. Conte, Ed. Lecture Notes in Math. 947, Springer, 1982, pp. 287–310.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    S. L. Kleiman, with the collaboration of A. Thorup on §3, Intersection Theory and Enumerative Geometry: A Decade in Review, in “Algebraic Geometry-Bowdoin 1985. Part 2,” Proc. of Sympos. Pure Math. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 321–370.MathSciNetGoogle Scholar
  12. [12]
    P. le Barz, Platitude et non-platitude des certains sous-schémas de Hilbk(PN), Jour. reine ang. Math. 348 (1984), 116–134.MATHGoogle Scholar
  13. [13]
    P. le Barz, Quelques calculs dans la variété des alignements, Adv. Math. 64 (1987), 87–117.CrossRefGoogle Scholar
  14. [14]
    Z. Ran, Curvilinear enumerative geometry, Acta Math. 155 (1985), 81–101.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    SGA3, “Schemas en Groups-Tome I, Exposé III,” by M. Demazure. Demazure. Lecture Notes in Math. 151, Springer, 1970.Google Scholar
  16. [16]
    SGA6, “Théorie des Intersections et Théorèm de Riemann-Roch,” P. Berthelot et al., Lecture Notes in Math. 225, Springer, 1971.Google Scholar
  17. [17]
    A. Thorup, Rational equivalence on arbitrary Noetherian schemes, these proceedings.Google Scholar
  18. [18]
    A. Thorup and S.L. Kleiman, Complete bilinear forms, in “Algebraic Geometry-Sundance, 1986,” A. Holme, R. Speiser, Eds. Lecture Notes in Math. 1311, Springer, 1988, pp. 253–320.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Steven L. Kleiman
    • 1
  1. 1.Mathematics Department, 2-278 M. I. T.CambridgeUSA

Personalised recommendations