The continuum hypothesis and the theory of the Kleene degrees

  • Juichi Shinoda
  • Theodore A. Slaman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1388)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. C. Kleene, Recursive functionals and quantifiers of finite types I, Trans. Amer. Math. Soc. 91 (1959), 1–52.MathSciNetMATHGoogle Scholar
  2. [2]
    _____, Recursive functionals and quantifiers of finite types II, Trans. Amer. Math. Soc. 108 (1963), 106–142.MathSciNetMATHGoogle Scholar
  3. [3]
    S. C. Kleene and E. L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379–407.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Gandy, R.O., Generalized recursive functionals of finite type and hierarchies of functionals, Ann. Fac. Sci. Univ. Clermont-Ferrand 35 (1967), 5–24.MathSciNetGoogle Scholar
  5. [5]
    A. Nerode and R. A. Shore, Reducibility orderings: theories, definability and automorphisms, Ann. Math. Logic 18 (1980), 61–89.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    D. Normann, Set recursion, in “Generalized Recursion Theory II,” North-Holland, Amsterdam, 1978, pp. 303–320.Google Scholar
  7. [7]
    J. Shinoda and T. A. Slaman, On the theory of the PTIME degrees of recursive sets, (to appear).Google Scholar
  8. [8]
    C. Spector, On degrees of recursive unsolvability, Ann. of Math. (2) 64 (1956), 581–592.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Juichi Shinoda
    • 1
    • 2
  • Theodore A. Slaman
    • 1
    • 2
  1. 1.Department of MathematicsNagoya UniversityNagoyaJapan
  2. 2.Department of MathematicsThe University of ChicagoChicagoUSA

Personalised recommendations