Schrödinger operators associated to a holomorphic map

  • Sebastián Montiel
  • Antonio Ros
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1481)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations of second order, J. Math. Pures Appl. 36 (1957), 235–249.MathSciNetMATHGoogle Scholar
  2. [Ba-do C]
    J. L. Barbosa and M. P. do Carmo, On the size of a stable minimal surface in ℝ 3, Amer. J. Math. 98 (1976), 515–528.MathSciNetCrossRefMATHGoogle Scholar
  3. [Bl]
    W. Blaschke, “Vorlesungen über Differentialgeometrie III,” Springer, Berlin, 1929.MATHGoogle Scholar
  4. [Br1]
    R. L. Bryant, A duality theorem for Willmore surfaces, J. Diff. Geom. 20 (1984), 23–53.MathSciNetMATHGoogle Scholar
  5. [Br2]
    R. L. Bryant, Surfaces in conformal geometry, Proc. of Symp. in Pure Math. 48 (1988), 227–240.MathSciNetCrossRefMATHGoogle Scholar
  6. [do C-Pe]
    M. P. do Carmo and C. K. Peng, Stable complete minimal surfaces in ℝ 3 are planes, Bull. Am. Math. Soc. 1 (1979), 903–905.MathSciNetCrossRefMATHGoogle Scholar
  7. [Che]
    S. S. Chern, On minimal spheres in the four sphere, in “Selected Papers,” Springer-Verlag, New York, 1988, pp. 421–434.Google Scholar
  8. [Cho]
    J. Choe, Index, vision number and stability of complete minimal surfaces, Arch. for Rat. Mech. and An. 109 (1990), 195–212.MathSciNetCrossRefMATHGoogle Scholar
  9. [Co-Hi]
    R. Courant and D. Hilbert, “Methods of Mathematical Physics,” Interscience, New York, 1953.MATHGoogle Scholar
  10. [E]
    N. Ejiri, Minimal deformations from a holomorphic map of S 2 onto S 2(1) to a minimal surface in S 4(1), preprint.Google Scholar
  11. [E-Ko]
    N. Ejiri and M. Kotani, Index and flat ends of minimal surfaces, preprint.Google Scholar
  12. [Fa-Kr]
    H. M. Frakas and I. Kra, “Riemann surfaces,” Springer-Verlag, New York, 1979.Google Scholar
  13. [FC]
    D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three manifolds, Invent. Math. 82 (1985), 121–132.MathSciNetCrossRefMATHGoogle Scholar
  14. [FC-Sch]
    D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in three manifolds of non-negative scalar curvature, Comm. of Pure and Appl. Math. 33 (1980), 199–211.MathSciNetCrossRefMATHGoogle Scholar
  15. [Gr-Ha]
    P. Griffiths and J. Harris, “Principles of algebraic geometry,” Wiley Interscience, New York, 1978.MATHGoogle Scholar
  16. [Gu]
    R. Gulliver, Index and total curvature of complete minimal surfaces, Proc. Symp. Pure Math. 44 (1986), 207–211.MathSciNetCrossRefMATHGoogle Scholar
  17. [Gui-Ka]
    V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved 2-manifolds, Topology 19 (1980), 301–312.MathSciNetCrossRefMATHGoogle Scholar
  18. [He]
    J. Hersch, Quatre propiétés isoperimetriques de membranes spheriques homogènes, C. R. Acad. Sci. Paris 270 (1970), 1645–1648.MathSciNetMATHGoogle Scholar
  19. [J-M]
    L. P. Jorge and W. H. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), 203–221.MathSciNetCrossRefMATHGoogle Scholar
  20. [La]
    G. Laffaille, Déterminants de laplaciens, Séminaire de Théorie Spectrale et Géometrie (1986), 77–84.Google Scholar
  21. [Li-Tr]
    P. Li and A. Treibergs, Applications of eigenvalue techniques to geometry, preprint.Google Scholar
  22. [Lo]
    F. J. López, The classification of complete minimal surfaces with total curvature greater than −12π, Trans. Amer. Math. Soc. (to appear).Google Scholar
  23. [Lo-R]
    F. J. López and A. Ros, Complete minimal surfaces with index one and stable mean curvature surfaces, Comment. Math. Helv. 64 (1989), 34–43.MathSciNetCrossRefMATHGoogle Scholar
  24. [Loo]
    B. Loo, The space of harmonic maps of S 2 into S 4, Trans. Amer. Math. Soc. 313 (1989), 81–102.MathSciNetMATHGoogle Scholar
  25. [N]
    S. Nayatani, Lower bounds for the Morse index of complete minimal surfaces in Euclidean 3-space, preprint.Google Scholar
  26. [On-V]
    E. Onofri and M. A. Virasoro, On a formulation of Polyakov's string theory with regular classical solutions, Nucl. Phys. B 201 (1982), 159–175.MathSciNetCrossRefGoogle Scholar
  27. [Os-Ph-Sa]
    B. Osgood, R. Phillips and P. Sarnack, Extremals of determinants of Laplacians, J. of Funct. An. 80 (1988), 148–211.MathSciNetCrossRefMATHGoogle Scholar
  28. [Oss]
    R. Osserman, “A survey of minimal surfaces,” Dover, New York, 1986.MATHGoogle Scholar
  29. [Po]
    A. V. Pogorelov, On the stability of minimal surfaces, Soviet Math. Dokl. 24 (1981), 274–276.MathSciNetMATHGoogle Scholar
  30. [Ro-To]
    H. Rosenberg and E. Toubiana, Some remarks on deformations of minimal surfaces, Trans. Amer. Math. Soc. 295 (1986), 491–499.MathSciNetCrossRefMATHGoogle Scholar
  31. [Sch]
    R. Schoen, Uniqueness, symmetry and embeddedness of minimal surfaces, J. Diff. Geom. 18 (1983), 791–809.MathSciNetMATHGoogle Scholar
  32. [Schw]
    H. A. Schwarz, “Gesammelte Abhandlungen,” Springer, Berlin, 1890, pp. 224–264.MATHGoogle Scholar
  33. [Ty]
    J. Tysk, Eigenvalue estimates with applications to minimal surfaces, Pacific J. of Math. 128 (1987), 361–366.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Sebastián Montiel
    • 1
  • Antonio Ros
    • 1
  1. 1.Departamento de Geometría y TopologíaUniversidad de GranadaGranadaSpain

Personalised recommendations