Advertisement

Intermittancy: Global aspects

  • Floris Takens
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1331)

Keywords

Periodic Point Invariant Manifold Unstable Manifold Stable Manifold Centre Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Bergé, Y. Pomeau, Ch. Vidal., Lórdre dans le chaos, Hermann, 1985.Google Scholar
  2. [2]
    R. Bowen, D. Ruelle., The ergodic theory of Axiom A flows, Inv. Math. 29, (1975), 181–202.-202.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Feigenbaum., Qualitative universality of a class of nonlinear transformations, Jour. Stat. Phys. 19, (1978), 25.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Hénon., A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50, (1976), 69.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Hirsch, C. Pugh, M. Shub., Invariant manifolds, Lecture Notes in Mathematics 583, (1977), Springer-Verlag.Google Scholar
  6. [6]
    S. Newhouse, J. Palis, F. Takens., Bifurcations and stability of families of diffeomorphisms, Publ. I.H.E.S. 57, (1983), 5–71.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Y. Pomeau, P. Manneville., Intermittant transition to turbulence in dissipative dynamical systems, Comm. Math. Phys. 74, (1980), 189–197.MathSciNetCrossRefGoogle Scholar
  8. [8]
    C. Pugh, M. Shub., Linearization of normally hyperbolic diffeomorphisms and flows, Inv. Math. 10, (1970), 187–198.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Shub., Stabilité global des systemes dynamiques, Astérisque 56, (1978).Google Scholar
  10. [10]
    S. Smale., Diffeomorphisms with many periodic points, Diff. and Comb. Topology, Princeton Univ. Press, 1965.Google Scholar
  11. [11]
    S. van Strien., On the bifurcation creating horseshoes, in Dynamical Systems, Lecture Notes in Mathematics 898, (1981), Springer-Verlag.Google Scholar
  12. [12]
    F. Takens., Normal forms of certain singularities of vector fields, Ann. Inst. Fourier, 23, (1973), 163–195.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    R. Williams., The "DA" maps of Smale and structural stability, in Global Analysis, Proc. Symp. Pure Math. 14, (1970), A.M.S.Google Scholar
  14. [14]
    C. Zeemann., Bifurcations, catastrophe, and turbulence, Proc. Cent. Conf., New directions in Appl. Math., Case Western Reserve Univ., Cleveland, Springer-Verlag, 1981.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Floris Takens

There are no affiliations available

Personalised recommendations