Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts

  • Masakazu Nasu
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1342)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. L. Adler and B. Marcus, topological entropy and equivalence of dynamical systems. Memoirs Amer. Math. Soc. 219 (1979).Google Scholar
  2. [2]
    K. A. Baker. Strong shift equivalence of 2 × 2 matrices of non-negative integers. Ergod. Th. & Dynam. Sys. (1983), 3, 501–508.CrossRefMATHGoogle Scholar
  3. [3]
    M. Boyle, Ph. D. Thesis, University of Washington, Seattle (1983).Google Scholar
  4. [4]
    M. Boyle, Eventual extensions of finite codes. Preprint.Google Scholar
  5. [5]
    M. Boyle, B. Kitchens and B. Marcus, A note on minimal covers for sofic systems. Proc. Amer. Math. Soc. 95 (1985), 403–411.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Boyle and W. Krieger, Periodic points and automorphisms of the shift. Trans. Amer. Math. Soc., to appear.Google Scholar
  7. [7]
    M. Boyle and W. Krieger, Almost Markov and shift equivalent sofic systems. Proceedings of the Special Year in Dynamical Systems of the University of Maryland 1986–87.Google Scholar
  8. [8]
    M. Boyle, D. Lind and D. Rudolph, the automorphism group of a shift of finite type. Trans. Amer. Math. Soc., to appear.Google Scholar
  9. [9]
    R. Fischer, Sofic systems and graphs, Monatsh. Math. 80 (1975), 165–177.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    R. Fischer, Graphs and symbolic dynamics. In Colloq. Math. Soc. János Bolyai 16, Topics in Information Theory. Keszthely, Hungary, 1975.Google Scholar
  11. [11]
    T. Hamachi and M. Nasu, Topological conjugacy for 1-block factor maps of subshifts and sofic covers. Proceedings of the Special Year in Dynamical Systems of the University of Maryland 1986–87.Google Scholar
  12. [12]
    B. Kitchens, Ph. D. Thesis, University of North Carolina, Chapel Hill (1981).Google Scholar
  13. [13]
    W. Krieger, On sofic systems I. Israel J. Math. 48 (1984), 305–330.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    W. Krieger, On sofic systems II. Preprint, Institut für Angewandte Mathematik der Universität Heidelberg.Google Scholar
  15. [15]
    B. Marcus, Sofic systems and encoding data. IEEE-IT, 31 (1985), 366–377.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M. Nasu, Constant-to-one and onto global maps of homomorphisms between strongly connected graphs. Ergod. Th. & Dynam. Sys. 3 (1983), 387–413.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    M. Nasu, An invariant for bounded-to-one factor maps between transitive sofic subshifts. Ergod. Th. & Dynam. Sys. 5 (1985), 89–105.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    M. Nasu, Topological conjugacy for sofic systems. Ergod. Th. & Dynam. Sys., 6 (1986), 265–280.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    B. Weiss, Subshifts of finite type and sofic systems. Monatsh. Math. 77 (1973), 462–474.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    R. F. Williams, Classification of subshifts of finite type. Ann. of Math. 98 (1973), 120–153; Errata: Ann. of Math. 99 (1974), 380–381.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    M. Boyle, Nasu’s simple automorphisms. Proceedings of the Special Year in Dynamical Systems of the University of Maryland 1986–87.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Masakazu Nasu
    • 1
  1. 1.Faculty of EngineeringMie UniversityTsuJapan

Personalised recommendations