On Milman's inequality and random subspaces which escape through a mesh in n

  • Y. Gordon
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1317)


Let S be a subset in the Euclidean space n and 1 <- k < n. We find sufficient conditions which guarantee the existence and even with probability close to 1, of k-codimensional subspaces which miss S. As a consequence we derive a sharp form of Milman's inequality and discuss some applications to Banach spaces.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BG]
    Y. Benyamini and Y. Gordon, Random factorization of operators between Banach spaces, J. d'Analyse Math. 39 (1981),45–74.MathSciNetCrossRefMATHGoogle Scholar
  2. [D]
    R.M. Dudley, The size of compact subsets of Hilbert spaces and continuity of Gaussian processes, J. Funct. Analy. 1 (1967), 290–330.MathSciNetCrossRefMATHGoogle Scholar
  3. [DS]
    S. Dilworth and S. Szarek, The cotype constant and almost Euclidean decomposition of finite dimensional normed spaces, preprint.Google Scholar
  4. [F1]
    X.M. Fernique, Des resultats nouveaux sur les processus Gaussiens, C.R. Acad. Sci., Paris. Ser. A-B 278 (1974), A363–A365.MathSciNetMATHGoogle Scholar
  5. [F2]
    X.M. Fernique, Régularité des trajectoires des fonctions aléatoires Gaussiens, Springer Lecture notes 480 (1975), 1–96.MathSciNetMATHGoogle Scholar
  6. [FT]
    T. Figiel and N. Tomczak-Jaegermann, Projection onto Hilbertian subspaces of Banach spaces, Israel J. Math 33 (1979), 155–171.MathSciNetCrossRefMATHGoogle Scholar
  7. [G1]
    Y. Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), 265–289.MathSciNetCrossRefMATHGoogle Scholar
  8. [G2]
    Y. Gordon, Gaussian processes and almost spherical sections of convex bodies, The Annals of Probability 16 (1987), to appear.Google Scholar
  9. [G3]
    Y. Gordon, Elliptically contoured distributions, Probability Theory and Related Fields, to appear.Google Scholar
  10. [K]
    J.P. Kahane, Une inequalité du type de Slepian et Gordon sur les processus Gaussiens, Israel J. Math. 55 (1986), 109–110.MathSciNetCrossRefMATHGoogle Scholar
  11. [L]
    D.R. Lewis, Ellipsoids defined by Banach ideal norms, Mathematica 26 (1979), 18–29.MathSciNetMATHGoogle Scholar
  12. [M1]
    V.D. Milman, Random subspaces of proportional dimension of finite dimensional normed spaces; approach through the isoperimetric inequality, Banach Spaces, Proc. Missouri Conference, 1986, Springer Lecture Notes #1166, 106–115.Google Scholar
  13. [M2]
    V.D. Milman, Almost Euclidean quotient spaces of subspaces of finite dimensional normed spaces. Proc. AM.S. 94 (1985), 445–449.MathSciNetCrossRefMATHGoogle Scholar
  14. [M3]
    V.D. Milman, Volume approach and iteration procedures in local theory of Banach spaces, Proc. Missouri Conf. 1984, Springer Lecture Notes 1166, 1985.Google Scholar
  15. [M4]
    V.D. Milman, The concentration phenomenon and linear structure of finite-dimensional normed spaces, to appear.Google Scholar
  16. [M5]
    V.D. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex bodies, Func. Anal. Appl. 5 (1971), 28–37.MathSciNetGoogle Scholar
  17. [MS]
    V.D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Springer Lecture Notes 1200, 1986.Google Scholar
  18. [P1]
    G. Pisier, Sur les éspaces de Banach K-convexes, Sém. D'Analyse Fonctionelle, exposé XI, 1979–80.Google Scholar
  19. [P2]
    G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Ann. Math. 115 (1982), 375–392.MathSciNetCrossRefMATHGoogle Scholar
  20. [P3]
    G. Pisier, Probabilistic methods in the geometry of Banach spaces, Springer Lecture Notes 1206 (1986), 167–241.MathSciNetMATHGoogle Scholar
  21. [PT1]
    A. Pajor and N. Tomczak-Jaegermann, Subspaces of small codimension of finite-dimensional Banach spaces, Proc. A.M.S. 97 (1986), 637–642.MathSciNetCrossRefMATHGoogle Scholar
  22. [PT2]
    A. Pajor and N. Tomczak-Jaegermann, Gelfand numbers and Euclidean sections of large dimensions, Springer Lecture Notes, Proc. Probability Conf., Aarhus, Denmark 1986, to appear.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Y. Gordon
    • 1
  1. 1.Technion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations