Advertisement

The azumaya complex of a commutative ring

  • John W. Duskin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1348)

Keywords

Tensor Product Simplicial Complex Commutative Ring Isomorphism Class Monoidal Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bass, H.: Algebraic K-Theory, W.A. Benjamin, New York (1968)zbMATHGoogle Scholar
  2. Benabou, J.: “Introduction to Bicategories” in Reports of the Midwest Category Seminar, Lec.Notes in Math.#47, pp.1–77,Springer Verlag, Berlin (1967)CrossRefGoogle Scholar
  3. Deligne, P.: “La Formule de Dualité Globale” in SGA-4, Lec.Notes in Math.#305,pp.481–587,Springer Verlag, Berlin (1973)Google Scholar
  4. Duskin,J. and Street,R.: “Nerves of Higher Dimensional Categories”, In Preparation Google Scholar
  5. Fröhlich,A. and Wall, C.T.C.: “Generalizations of the Brauer Group”, Preprint, Liverpool University (1971)Google Scholar
  6. Glenn, P.: Realization of Cohomology Classes by Torsors under Hypergroupoids, Ph.D. Thesis, S.U.N.Y.,Buffalo(1977)Google Scholar
  7. _____:“Realization of Cohomology Classes in Arbitrary Exact Categories,” J.Pure Appl. Alg.,v.25, pp.33–105 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Gray,J.W.:“Coherence for the Tensor Product of 2-Categories,and Braid Groups” in Algebra, Topology and Category Theory (a Collection of Papers in Honor of Samuel Eilenberg), pp.106–147,Academic Press(1976)Google Scholar
  9. Grothendieck, A.: “Le group de Brauer I, II, III” in Dix Exposés sur la Cohomologie des Schémas, pp.46–188,North Holland, Amsterdam (1968)Google Scholar
  10. Knus, M.A. and Ojanguren, M.: Théorie de la Déscent et Algèbres de Azumaya, Lec.Notes in Math.#389, Springer Verlag, Berlin(1974)CrossRefzbMATHGoogle Scholar
  11. May, J.P.: Simplicial Objects in Algebraic Topology, Van Nostrand Math. Studies #11, Van Nostrand, Princeton (1967)zbMATHGoogle Scholar
  12. Orzech, M. and Small, C.: The Brauer Group of Rings, Lec. Notes in Pure Appl.Math. #11,Marcel Dekker, New York (1975)zbMATHGoogle Scholar
  13. Street,R.: “The Algebra of Oriented Simplices”. Preprint. Macquarie University (1984) to appear J.Pure Appl.Alg.Google Scholar
  14. Wall, C.T.C.: “Equivariant Algebraic K-Theory” in Segal, G.: New Developments in Topology. Lon. Math. Soc. Lec. Notes.#11, Cambridge Univ. Press., Cambridge (1974)Google Scholar
  15. Zelinski, D.: “Long Exact Sequences and the Brauer Group”, in Brauer Groups, Evanston Ill.1975, Lec.Notes in Math.#549, Springer Verlag, Berlin (1976)CrossRefGoogle Scholar
  16. _____ “Brauer Groups”, in Ring Theory II, Lec.Notes in Pure Appl.Math.#26, Marcel Dekker, New York (1977)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • John W. Duskin
    • 1
  1. 1.Department of MathematicsState University of New York at BuffaloUSA

Personalised recommendations