Pseudofunctors and non-abelian weak equivalences

  • Dominique Bourn
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1348)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. BARR, Exact categories, L.N. in Math. 236, Springer (1971), 1–120.MATHGoogle Scholar
  2. [2]
    J. BENABOU, Introduction to bicategories, L.N. in Math. 47, Springer (1967), 1–77.MathSciNetGoogle Scholar
  3. [3]
    D. BOURN, La tour de fibrations exactes des n-categories, Cahiers Top. Geom. Diff. XXV, 4, (1984), 327–351.MathSciNetMATHGoogle Scholar
  4. [4]a)
    D. BOURN, Une théorie de cohomologie pour les catégories exactes, CRAS, T. 303, (1986), 173–176.MathSciNetMATHGoogle Scholar
  5. [4]b)
    Higher cohomology groups as classes of principal group actions, Preprint Univ. de Picardie, (1985).Google Scholar
  6. [5]
    D. BOURN, Another denormalisation theorem for the abelian chain complexes, (to appear).Google Scholar
  7. [6]
    R. BROWN & M. GOLASINSKI, A model structure for the homotopy theory of crossed complexes, Preprint University of Wales, 87.12.Google Scholar
  8. [7]
    R. BROWN & P.J. HIGGINS, Colimit theorem for relative homotopy groups, J. Pure Appl. Algebra, 22, (1981), 11–41.MathSciNetCrossRefMATHGoogle Scholar
  9. [8]
    R. BROWN & P.J. HIGGINS, The equivalence of ∞-groupoids and crossed complexes, Cahiers Top. et Géom. Diff., 22, 4, (1981), 371–386.MathSciNetMATHGoogle Scholar
  10. [9]
    J. DUSKIN, Higher dimensional torsors and cohomology of topoï: the abelian theory, L.N. in Math. 753, Springer (1979).Google Scholar
  11. [10]
    P. GLENN, Realization of cohomology classes in arbitrary exact categories, J. Pure Appl. Algebra 25, (1982), 33–105.MathSciNetCrossRefMATHGoogle Scholar
  12. [11]
    J.W. GRAY, Formal category theory: adjointness for 2-categories, L.N. in Math. 391, Springer (1974).Google Scholar
  13. [12]
    P. HILTON, Correspondances and exact squares, Proc. Conf. on Cat. Alg., La Jolla, Springer (1966).Google Scholar
  14. [13]
    P.T. JOHNSTONE, Topos theory, Academic Press, (1977).Google Scholar
  15. [14]
    G.H. KELLY & R. STREET, Review of the elements of 2-categories, L.N. in Math., 420, Springer (1974), 75–103.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Dominique Bourn
    • 1
  1. 1.U.F.R. Maths & InformatiqueUniversité de PicardieAmiens CedexFrance

Personalised recommendations