Geometric fixed point theory and inwardness conditions

  • James Caristi
  • William A. Kirk
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 490)


Banach Space Closed Subset Fixed Point Theorem Nonexpansive Mapping Contraction Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N.A. Assad and W.A. Kirk, Fixed point theorems for set valued mappings of contractive type, Pacific J. Math. 43 (1972), 553–562.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    H. Brezis, On a characterization of flow invariant sets, Comm. Pure Appl. Math. 23 (1970), 261–263.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions.Google Scholar
  4. [4]
    B. Halpern, Fixed point theorems for outward maps, Doctoral Thesis, U.C.L.A. (1965).Google Scholar
  5. [5]
    B. Halpern and G. Bergman, A fixed point theorem for inward and outward maps, Trans. Amer. Math. Soc. 130 (1968), 353–358.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R.H. Martin, Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399–414.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    W.V. Petryshyn and P.M. Fitzpatrick, Fixed point theorems for multivalued noncompact inward maps.Google Scholar
  8. [8]
    S. Reich, Remarks on fixed points, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 52 (1972), 690–697.MathSciNetzbMATHGoogle Scholar
  9. [9]
    S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl. 41 (1973), 460–467.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S. Reich, Fixed points of nonexpansive functions, J. London Math. Soc. 7 (1973), 5–10.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    G. Vidossich, Nonexistence of periodic solutions of differential equations and applications to zeros of nonlinear operators.Google Scholar
  12. [12]
    G. Vidossich, Applications of topology to analysis: On the topological properties of the set of fixed points of nonlinear operators, Confer. Sem. Mat. Univ. Bari 126 (1971), 1–62.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • James Caristi
    • 1
  • William A. Kirk
    • 1
  1. 1.The University of IowaUSA

Personalised recommendations