Advertisement

Singularities of solutions of differential equations on complex manifolds (characteristical case)

  • B.Yu. Sternin
  • V. E. Shatalov
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1334)

Keywords

Vector Field Complex Manifold Natural Parameter Analytical Manifold Lagrangian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maslov V.P. Teoriya vozmushchenii i asymptoticheskie metody (Theory of Perturbations and Asymptotic Methods) Moscow State University, Moscow, 1965 (in Russian) (French translation: Théorie des perturbations et methodes asymptotiques, Dunod, Ganthier Villars, Paris, 1972).Google Scholar
  2. 2.
    Sternin B.Yu. Shatalov V.E. On an integral transformation of complex analytic functions, Izvestija Akad. Nauk SSSR, v. 5 (1986).Google Scholar
  3. 3.
    Sternin B.Yu., Shatalov V.E., Laplace-Radon integral operators and singularities of solutions of differential equations on complex manifolds (See this volume).Google Scholar
  4. 4.
    Sternin B.Yu., Shatalov V.E. On an integral transformation of complex analytic functions, Doklady Akad. Nauk SSSR, 280 (1985) N 3=Soviet Math. Dokl. Vol. 31 (1985) No. 1.Google Scholar
  5. 5.
    Mistchenko A.S., Sternin B.Yu., Shatalov V.E. Lagranjevy mnogoobraziya i metod kanonitcheskogo operatora (Lagrangian Manifolds and Canonical Operator Method), Nauka, Moscow, (1978) (in Russian).Google Scholar
  6. 6.
    Pham F., Introduction à l'étude topologique des singularités de Landau, Paris, 1967.Google Scholar
  7. 7.
    Leray, J. Un prolongement de la transformation de Laplace qui transforme la solution unitaire d'un opérateur hyperbolique en sa solution élémentaire (Problème de Cauchy, IV). Bull. Soc. Math. de France, 1962, vol. 90, fasc I.Google Scholar
  8. 8.
    Leray J. Le calcul différentiel et integral sur une variété analitique complexe (Problème de Cauchy, III). Bull. Soc. Math. de France, 1959, Vol. 87, fasc. II.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • B.Yu. Sternin
    • 1
  • V. E. Shatalov
    • 2
  1. 1.Moscow Institute of Electronic BuildingMoscowURSS
  2. 2.Moscow Institute of Civil Aviation EngineersMoscowUSSR

Personalised recommendations