Croissance des groupes de type fini et fonctions harmoniques

  • André Avez
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 532)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1]
    G.M. Adelson et Y. Schreider. The Banach mean on a group. Uspehi Mat. Nauk. (N.S.) 12, no 6 (78), (1975), 131–136Google Scholar
  2. [2]
    A. Avez. Entropie des groupes de type fini. C.R.A.S. Paris, Série A, t. 275, (1972), 1363–1366.MathSciNetMATHGoogle Scholar
  3. [3]
    -. Limites de quotients pour des marches aléatoires sur des groupes. C.R.A.S. Paris, série A, t. 276, (1973), 317–320.MathSciNetMATHGoogle Scholar
  4. [4]
    -. Théorème de Choquet-Deny pour les groupes à croissance non exponentielle. C.R.A.S. Paris, série A, t. 279, (1974), 25–28.MathSciNetMATHGoogle Scholar
  5. [5]
    R. Azencott. Espaces de Poisson des groupes localement compacts. Lecture Notes, Springer (1970).Google Scholar
  6. [6]
    G. Choquet et J. Deny. Sur l’équation de convolution μ=μ*σ C.R.A.S. Paris, série A, t. 250, (1960), 799–801.MathSciNetMATHGoogle Scholar
  7. [7]
    Y. Derriennic et Y. Guivarc’h. Théorème de renouvellement pour les groupes non moyennables. C.R.A.S. Paris, série A, t. 277, (1973), 613–615.MathSciNetMATHGoogle Scholar
  8. [8]
    E.B. Dynkin et M.B. Maliutov. Random walk on groups with a finite number of generators, Dokl. Akad. Nauk. SSSR. 137 (1961), 1042–1045.MathSciNetGoogle Scholar
  9. [9]
    F. Greenleaf. Invariant means on topological groups. Van Nostrand, (1969).Google Scholar
  10. [10]
    Y. Guivarc’h. Croissance polynomiale et périodes des fonctions harmoniques. Bull. Soc. Math. France, 101, (1973), 333–379.MathSciNetMATHGoogle Scholar
  11. [11]
    H. Kesten, Symmetric random walks on groups. Trans. Amer. Math. Soc. 92, (1959), 336–354.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    -. Full Banach mean values on countable groups. Math. Scand. 7, (1959), 146–156.MathSciNetMATHGoogle Scholar
  13. [13]
    J. Milnor. A note on curvature and fundamental groups. J. Diff. Geom. 2, (1968), 1–7.MathSciNetMATHGoogle Scholar
  14. [14]
    V. Rohlin. Axiomatic definition of the entropy of a transformation with invariant measure. Soviet. Math. Dokl. Vol. 4, no 1, (1963), 188–191.Google Scholar
  15. [15]
    A. S. Svarc. A volume invariant of coverings. Dokl. Akad. Nauk. SSSR. 105 (1955), 32–34.MathSciNetGoogle Scholar
  16. [16]
    J. Wolf. Growth of finitely generated groups and curvature of Riemann manifolds. J. Diff. Geom., 2, (1968), 421–446.MATHGoogle Scholar
  17. [17]
    K. Yosida. Functional Analysis. Springer (1966).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • André Avez
    • 1
  1. 1.Département de MécaniqueUniversité de PARIS VIPARIS Cedex 05

Personalised recommendations