Commuting differential operators and zonal spherical functions

  • I. G. Macdonald
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1271)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Aomoto, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Analysis, to appear.Google Scholar
  2. [2]
    A. Debiard, Polynômes de Tchébychev et de Jacobi dans un espace euclidien de dimension p, C.R. Acad. Sc. Paris 296 (1983) Série I, 529–532.MathSciNetMATHGoogle Scholar
  3. [3]
    F.J. Dyson, Statistical theory of the energy levels of complex systems I, J. Math. Phys., 3(1962) 140–156.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    R.H. Farrell, Multivariate calculation, Springer-Verlag (1985).Google Scholar
  5. [5]
    S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press (1978).Google Scholar
  6. [6]
    L.-K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, AMS Translations 6 (1963).Google Scholar
  7. [7]
    H. Jack, A class of symmetric polynomials with a parameter, Proc. R.S. Edinburgh 69A (1970) 1–18.MathSciNetMATHGoogle Scholar
  8. [8]
    A.T. James, Zonal polynomials of the real positive definite symmetric matrices, Ann. Math. 74 (1961) 456–469.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    K. Kadell, A proof of some q-analogs of Selberg's integral for k=1, SIAM J. Math. Analysis, to appear.Google Scholar
  10. [10]
    I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press (1979).Google Scholar
  11. [11]
    I.G. Macdonald, Some conjectures for root systems, SIAM J. Math. Analysis, 13 (1982) 988–1007.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J. Sekiguchi, Zonal spherical functions on some symmetric spaces, Publ. RIMS, Kyoto University 12 (1977) 455–459.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    A. Selberg, Bemerkninger om et Multipelt Integral, Norsk. Mat. Tidsskrift 26 (1944) 71–78.MathSciNetGoogle Scholar
  14. [14]
    R. Stanley, private communication.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • I. G. Macdonald
    • 1
  1. 1.School of Mathematical SciencesQueen Mary CollegeLondon

Personalised recommendations