Commuting differential operators and zonal spherical functions

  • I. G. Macdonald
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1271)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Aomoto, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Analysis, to appear.Google Scholar
  2. [2]
    A. Debiard, Polynômes de Tchébychev et de Jacobi dans un espace euclidien de dimension p, C.R. Acad. Sc. Paris 296 (1983) Série I, 529–532.MathSciNetMATHGoogle Scholar
  3. [3]
    F.J. Dyson, Statistical theory of the energy levels of complex systems I, J. Math. Phys., 3(1962) 140–156.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    R.H. Farrell, Multivariate calculation, Springer-Verlag (1985).Google Scholar
  5. [5]
    S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press (1978).Google Scholar
  6. [6]
    L.-K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, AMS Translations 6 (1963).Google Scholar
  7. [7]
    H. Jack, A class of symmetric polynomials with a parameter, Proc. R.S. Edinburgh 69A (1970) 1–18.MathSciNetMATHGoogle Scholar
  8. [8]
    A.T. James, Zonal polynomials of the real positive definite symmetric matrices, Ann. Math. 74 (1961) 456–469.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    K. Kadell, A proof of some q-analogs of Selberg's integral for k=1, SIAM J. Math. Analysis, to appear.Google Scholar
  10. [10]
    I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press (1979).Google Scholar
  11. [11]
    I.G. Macdonald, Some conjectures for root systems, SIAM J. Math. Analysis, 13 (1982) 988–1007.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J. Sekiguchi, Zonal spherical functions on some symmetric spaces, Publ. RIMS, Kyoto University 12 (1977) 455–459.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    A. Selberg, Bemerkninger om et Multipelt Integral, Norsk. Mat. Tidsskrift 26 (1944) 71–78.MathSciNetGoogle Scholar
  14. [14]
    R. Stanley, private communication.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • I. G. Macdonald
    • 1
  1. 1.School of Mathematical SciencesQueen Mary CollegeLondon

Personalised recommendations