A class of weighted projective curves arising in representation theory of finite dimensional algebras

  • Werner Geigle
  • Helmut Lenzing
Representation Of Algebras
Part of the Lecture Notes in Mathematics book series (LNM, volume 1273)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Atiyah, “Vector bundles over an elliptic curve,” Proc. London Math. Soc., vol. 7, pp. 414–452, 1957.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    M. Auslander and I. Reiten, “Representation theory of Artin algebras III,” Comm. Algebra, vol. 3, pp. 239–294, 1975.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    M. Auslander, “Functors and morphisms determined by objects and applications of morphisms determined by modules,” Proc. conf. representation theory, Philadelphia 1976, pp. 1–244, Marcel Dekker, New York, 1978.Google Scholar
  4. 4.
    M. Auslander, “Rational singularities and almost split sequences,” Trans. Amer. Math. Soc., vol. 293, pp. 511–532, 1986.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    A. A. Beilinson, “Coherent sheaves on P n and problems of linear algebra,” Funct. Anal. Appl., vol. 12, pp. 214–216, 1979.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    M. Beltrametti and L. Robbiano, Introduction to the theory of weighted projective spaces, Preprint MPI Bonn, 1985.Google Scholar
  7. 7.
    K. Bongartz, “Tilted algebras,” Representations of algebras, pp. 26–38, Springer-Verlag, Berlin-Heidelberg-New York, 1981. Lecture Notes in Mathematics 903.CrossRefGoogle Scholar
  8. 8.
    C. Delorme, “Espaces projectifs anisotropes,” Bull. Soc. Math. France, vol. 103, pp. 203–223, 1975.MathSciNetMATHGoogle Scholar
  9. 9.
    V. Dlab and C. M. Ringel, “Indecomposable representations of graphs and algebras,” Mem. Amer. Math. Soc., vol. 173, 1976.Google Scholar
  10. 10.
    I. Dolgachev, “Weighted projective varieties,” Group actions and vector fields, pp. 34–71, Springer-Verlag, Berlin-Heidelberg-New York, 1982. Lecture Notes in Mathematics 956.CrossRefGoogle Scholar
  11. 11.
    P. Donovan and M. R. Freislich, The representation theory of finite graphs and associative algebras, Ottawa, 1973. Carleton Lecture Notes 5.Google Scholar
  12. 12.
    P. Gabriel, “Des catégories abéliennes.,” Bull. Soc. math. France, vol. 90, pp. 323–448, 1967.MathSciNetMATHGoogle Scholar
  13. 13.
    P. Gabriel, “Indecomposable representations II,” Symposia Math. Ist. Naz. Alta Mat., vol. 11, pp. 81–107, 1973.MathSciNetMATHGoogle Scholar
  14. 14.
    P. Gabriel, “Auslander-Reiten sequences and representation-finite algebras,” Proceedings Ottawa 1979, pp. 1–71, Springer-Verlag, Berlin-Heidelberg-New York, 1980.Google Scholar
  15. 15.
    R. Godement, Théorie des faisceaux, Hermann, Paris, 1973.MATHGoogle Scholar
  16. 16.
    A. Grothendieck, “Sur la classification des fibrés holomorphes sur la surface de Riemann,” Amer. J. Math., vol. 79, pp. 121–138, 1957.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    A. Grothendieck, Eléments de géométrie algébrique II, Publications Mathématiques 8, Institut des Hautes Etudes Scientifiques, Paris, 1961.MATHGoogle Scholar
  18. 18.
    A. Grothendieck, Eléments de géométrie algébrique III, Publications Mathématiques 11, Institut des Hautes Etudes Scientifiques, Paris, 1961.MATHGoogle Scholar
  19. 19.
    D. Happel, U. Preiser, and C. M. Ringel, “Binary polyhedral groups and Euclidean diagrams,” Manuscripta math., vol. 31, pp. 317–329, 1980.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    D. Happel and C. M. Ringel, “Tilted Algebras,” Trans. Amer. Math. Soc., vol. 274, pp. 399–443, 1982.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    D. Happel, “Triangulated categories in representation theory of finite dimensional algebras,” Comm. Math. Helv., 1986. To appear.Google Scholar
  22. 22.
    D. Happel and C. M. Ringel, “The derived category of a tubular algebra,” Representation theory I, Finite dimensional algebras, pp. 156–180, Springer-Verlag, Berlin-Heidelberg-New York, 1986. Lecture Notes in Mathematics 1177.CrossRefGoogle Scholar
  23. 23.
    R. Hartshorne, Residues and duality, Lecture Notes in Mathematics 20, Springer-Verlag, Berlin-Heidelberg-New York, 1966.MATHGoogle Scholar
  24. 24.
    R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, Berlin-Heidelberg-New York, 1977.MATHGoogle Scholar
  25. 25.
    F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, Leipzig, 1884.MATHGoogle Scholar
  26. 26.
    H. Lenzing, “Curve singularities arising from the representation theory of tame hereditary Artin algebras,” Representation theory I. Finite dimensional Algebras, pp. 199–231, Springer-Verlag, Berlin-Heidelberg-New York, 1986. Lecture Notes in Mathematics 1177.CrossRefGoogle Scholar
  27. 27.
    S. Mori, “Graded factorial domains,” Japan. J. Math., vol. 3, pp. 223–238, 1977.MathSciNetMATHGoogle Scholar
  28. 28.
    L. A. Nazarova, “Representations of quivers of infinite type,” Izv. Akad. Nauk SSR, Ser. Math., vol. 37, pp. 752–791, 1973.MathSciNetMATHGoogle Scholar
  29. 29.
    T. Oda, “Vector bundles on an elliptic curve,” Nagoya Math. J., vol. 43, pp. 41–72, 1971.MathSciNetMATHGoogle Scholar
  30. 30.
    C. M. Ringel, Tame algebras and integral quadratic forms, Springer, Berlin-Heidelberg-New York, 1984. Lecture Notes in Mathematics 1099.MATHGoogle Scholar
  31. 31.
    J.-P. Serre, “Faisceaux algébriques cohérents,” Annals of Math., vol. 61, pp. 197–278, 1955.CrossRefMATHGoogle Scholar
  32. 32.
    C. S. Seshadri, “Fibrés vectoriels sur les courbes algébriques,” Astérisque, vol. 96, pp. 1–209, 1982.MathSciNetMATHGoogle Scholar
  33. 33.
    P. Slodowy, “Platonic solids, Kleinian singularities and Lie groups,” Algebraic Geometry, pp. 102–138, Springer-Verlag, Heidelberg-New York, 1983. Lecture Notes in Mathematics 1008.CrossRefGoogle Scholar
  34. 34.
    J. L. Verdier, “Catégories dérivés, etat 0,” Séminaire géométrie algébrique, 4 1/2, pp. 262–311, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Lecture Notes in Mathematics 569.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Werner Geigle
    • 1
  • Helmut Lenzing
    • 1
  1. 1.Fachbereich Mathematik-InformatikUniversität-GH PaderbornPaderbornGermany

Personalised recommendations