Differential Geometry pp 171-227

Part of the Lecture Notes in Mathematics book series (LNM, volume 1263)

Metric differential geometri

  • Karsten Grove
Chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    U. Abresch, Lower curvature bounds, Toponogov's theorem, and bounded topology, I, Ann. scient. Éc. Norm. Sup. 18 (1985), 563–633; II, to appear.MathSciNetMATHGoogle Scholar
  2. [Ba]
    W. Ballmann, Non-positively curved manifolds with rank ≧ 2, Ann. of Math., to appear.Google Scholar
  3. [BBE]
    W. Ballmann, M. Brin, P. Eberlein, Structure on manifolds with non-positive curvature, I, Ann. of Math., to appear.Google Scholar
  4. [BBS]
    W. Ballmann, M. Brin, R. Spatzier, Structure on manifolds with non-positive curvature, II, Ann. of Math., to appear.Google Scholar
  5. [Be1]
    M. Berger, Blaschke's Conjecture for Spheres, Appendix D in A. Besse, Manifolds all of whose Geodesics are Closed, Ergebnisse 93, Springer (1978).Google Scholar
  6. [Be2]
    M. Berger, Sur les variétés riemanniennes pincées juste au-dessous de 1/4, Ann. Inst. Fourier 33 (1983), 135–150.MathSciNetCrossRefMATHGoogle Scholar
  7. [BC]
    R.L. Bishop, R.J. Crittenden, Geometry of Manifolds, Academic Press (1964).Google Scholar
  8. [Br]
    D.L. Brittain, A Diameter Pinching Theorem for Positive Ricci Curvature, to appear.Google Scholar
  9. [BS1]
    K. Burns, R. Spatzier, Classification of a class of topological Tits buildings, Publ. math. I.H.E.S., to appear.Google Scholar
  10. [BS2]
    K. Burns, R. Spatzier, Manifolds of non positive curvature and their buildings, Publ. math. I.H.E.S., to appear.Google Scholar
  11. [BK]
    P. Buser, H. Karcher, Gromov's almost flat manifolds, Asterisque 81 (1981).Google Scholar
  12. [CE]
    J. Cheeger, D.G. Ebin, Comparison Theorems in Riemannian Geometry, North Holland (1975).Google Scholar
  13. [CG1]
    J. Cheeger, D. Gromoll, The splitting theorem for manifolds of non-negative Ricci curvature, J. Differential Geometry 6 (1971), 119–128.MathSciNetMATHGoogle Scholar
  14. [CG2]
    J. Cheeger, D. Gromoll, On the structure of complete manifolds of non-negative curvature, Ann. of Math. 96 (1972), 413–443.MathSciNetCrossRefMATHGoogle Scholar
  15. [Cg]
    S.Y. Cheng, Eigenvalue comparison theorem and its geometric applications, Math.Z. 143 (1975), 289–297.MathSciNetCrossRefMATHGoogle Scholar
  16. [Cn]
    S.S. Chern, The geometry of G-structures, Bull. Amer. Math. Soc. 72 (1966), 167–219.MathSciNetCrossRefMATHGoogle Scholar
  17. [D]
    O. Duremeric, A generalization of Berger's almost 1/4-pinched manifolds theorem, I, Bull. Amer. Math. Soc. 12 (1985), 260–264.MathSciNetCrossRefGoogle Scholar
  18. [DK]
    D. De Turk, J. Kazdan, Some regularity theorems in riemannian geometry, Ann. Sc. Ec. Norm. Sup. 14 (1981), 249–260.MathSciNetMATHGoogle Scholar
  19. [GW]
    R.E. Greene, H. Wu, Lipschitz convergence of riemannian manifolds, to appear.Google Scholar
  20. [GG]
    D. Gromoll, K. Grove, Rigidity of positively curved manifolds with large diameter, Seminar on Differential Geometry, Ann. of Math. Studies, Princeton University Press (1982), 203–207.Google Scholar
  21. [GKM]
    D. Gromoll, W. Klingenberg, W.T. Meyer, Riemannsche Geometrie im Grossen, Lecture notes 55, Springer (1968).Google Scholar
  22. [GLP]
    M. Gromov, J. Lafontaine, P. Pansu, Structures métrique pour les variétés riemanniennes, Cedic/Fernand Nathan (1981).Google Scholar
  23. [G1]
    M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), 179–195.MathSciNetCrossRefMATHGoogle Scholar
  24. [G2]
    M. Gromov, Almost flat manifolds, J. Differential Geometry 13 (1978), 231–242.MathSciNetMATHGoogle Scholar
  25. [GL1]
    M. Gromov, H.B. Lawson, Jr., Spin and scalar curvature in the presence of a fundamental group, Ann. of Math. 111 (1980), 209–230.MathSciNetCrossRefMATHGoogle Scholar
  26. [GL2]
    M. Gromov, H.B. Lawson, Jr., The classification of simply-connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980), 423–434.MathSciNetCrossRefMATHGoogle Scholar
  27. [GL3]
    M. Gromov, H.B. Lawson, Jr., Positive scalar curvature and the Dirac operator on complete riemannian manifolds, Publ. Math. I.A.E.S. 58 (1983), 83–196.MathSciNetCrossRefMATHGoogle Scholar
  28. [GK]
    K. Grove, H. Karcher, How to conjugate C1-close group actions, Math. Z. 132 (1973), 11–20.MathSciNetCrossRefMATHGoogle Scholar
  29. [GKR]
    K. Grove, H. Karcher, E.A. Ruh, Jacobi fields and Finsler metrics on compact Lie groups with applications to differentiable pinching problems, Math. Ann. 211 (1974), 7–21.MathSciNetCrossRefMATHGoogle Scholar
  30. [GS]
    K. Grove, K. Shiohama, A generalized sphere theorem, Ann. of Math. 106 (1977), 201–211.MathSciNetCrossRefMATHGoogle Scholar
  31. [Ha]
    R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), 225–306.MathSciNetMATHGoogle Scholar
  32. [HK]
    E. Heintze, H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Ec. Norm. Sup. 11 (1978), 451–470.MathSciNetMATHGoogle Scholar
  33. [Hi]
    N. Hitchin, Harmonic spinors, Adv. in Math. 14 (1974), 1–55.MathSciNetCrossRefMATHGoogle Scholar
  34. [IR]
    H.C. Im-Hof, E.A. Ruh, An equivariant pinching theorem, Comment. Math. Helv. 50 (1975), 389–401.MathSciNetCrossRefMATHGoogle Scholar
  35. [I]
    Y. Itokawa, The topology of certain Riemannian manifolds with positive Ricci curvature, J. Differential Geometry 18 (1983), 151–155.MathSciNetMATHGoogle Scholar
  36. [JK]
    J. Jost, H. Karcher, Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen, Manuscripta Math. 40 (1982), 27–77.MathSciNetCrossRefMATHGoogle Scholar
  37. [K]
    A. Katsuda, Gromov's convergence theorem and its application, Nagoya Math. J. 100 (1985), 11–48.MathSciNetMATHGoogle Scholar
  38. [Ka]
    J. Kazdan, An isoperimetric inequality and Wiedersehen manifolds, Ann. of Math. Sudies, Princeton University Press (1982).Google Scholar
  39. [KW]
    J. Kazdan, F. Warner, Prescribing curvatures, A.M.S. Proc. of Symp. in Pure Math. 27 (1975), 309–319.MathSciNetCrossRefMATHGoogle Scholar
  40. [Kl]
    W. Klingenberg, Riemannian Geometry, de Gruyter (1982).Google Scholar
  41. [KN]
    S. Kobayashi, K. Nomizu, Foundations of Differential Geometry I, II, Interscience Publishers (1963, 1969).Google Scholar
  42. [L]
    A. Lichnerowicz, Spineurs harmoniques, C.r. Acad. Sci. Paris, Sér. A-B, 257 (1963), 7–9.MathSciNetMATHGoogle Scholar
  43. [M1]
    J. Milnor, Morse Theory, Ann. of Math. Studies, Princeton University Press (1963).Google Scholar
  44. [M2]
    J. Milnor, A note on curvature and the fundamental group, J. Differential Geometry 2 (1968), 1–7.MathSciNetMATHGoogle Scholar
  45. [Pe1]
    S. Peters, Cheeger's finiteness theorem for diffeomorphism classes of riemannian manifolds, J. Reine Angew. Math. 394 (1984), 77–82.MATHGoogle Scholar
  46. [Pe2]
    S. Peters, Convergence of Riemannian manifolds, to appear.Google Scholar
  47. [Po]
    W.A. Poor, Some results on nonnegatively curved manifolds, J. Differential Geometry 9 (1974), 583–600.MathSciNetMATHGoogle Scholar
  48. [R]
    J. Rosenberg, C*-algebras, positive scalar curvature and the Novikov conjecture I, Publ. Math. I.H.E.S. 58 (1983), 197–212, II, III to appear.MathSciNetCrossRefMATHGoogle Scholar
  49. [SY1]
    R. Schoen, S.T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), 159–183.MathSciNetCrossRefMATHGoogle Scholar
  50. [SY2]
    R. Shoen, S.T. Yau, Complete three dimensional manifolds with positive Ricci curvature and scalar curvature, Seminar on Differen ial Geometry, Ann. of Math. Studies, Princeton University Press (1982), 209–227.Google Scholar
  51. [S]
    K. Shiohama, A sphere theorem for manifolds of positive Ricci curvature, Trans. Amer. Math. Soc. 275 (1983), 811–819.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Karsten Grove

There are no affiliations available

Personalised recommendations