Convergence study for viscous splitting in bounded domains

  • Ying Lung-an 
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1297)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adams, R.A., Sobolev Spaces, Academic Press, New York (1975).MATHGoogle Scholar
  2. [2]
    Alessandrini, G., Douglis, A. and Fabes, E., An approximate layering method for the Navier-Stokes equations in bounded cylinders, Annali di Matematica, 135, (1983), 329–347.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Beale, J.T. and Majda, A., Rate of convergence for viscous splitting of the Navier-Stokes equations, Math. Comp., 31, (1981), 243–259.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Chorin, A.J., Numerical study of slightly viscous flow, J. Fluid Mech., 59, (1973), 785–796.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Chorin, A.J., Vortex sheet approximation of boundary layers, J. Comput. Phys., 27, (1978), 428–442.CrossRefMATHGoogle Scholar
  6. [6]
    Chorin, A.J., Hughes, T.J.R., McCracken, M.F. and Marsden, J.E., Product formulas and numerical algorithms, Comm. Pure Appl. Math., 31, (1978), 205–256.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Fujita, H. and Morimoto, H., On fractional powers of the Stokes operator, Proc. Japan Acad., 46, (1970), 1141–1143.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Ladyzhenskaya, O.A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969).MATHGoogle Scholar
  9. [9]
    Leonard, A., Vortex methods for flow simulation, J. Comput. Phys., 37, (1980), 289–335.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Lions, J.L. and Magenes, E., Nonhomogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin (1972).CrossRefMATHGoogle Scholar
  11. [11]
    Temam, R., On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20, (1975), 32–43.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Teng, Z-H., Elliptic-vortex method for incompressible flow at high Reynolds number, J. Comput. Phys., 46, (1982), 54–68.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Teng, Z.-H., Variable-elliptic-vortex method for incompressible flow simulation, J. Comput. Math., 4 (1986), 255–262.MathSciNetMATHGoogle Scholar
  14. [14]
    Ying, L.-a., The viscosity splitting method in bounded domains, (to appear).Google Scholar
  15. [15]
    Ying, L.-a., The viscosity splitting method for the Navier-Stokes equations in bounded domains, (to appear).Google Scholar
  16. [16]
    Ying, L.-a., On the viscosity splitting method of initial boundary value problems of the Navier-Stokes equations, (to appear).Google Scholar
  17. [17]
    Ying, L.-a., Viscosity splitting method for three dimensional Navier-Stokes equations, (to appear).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Ying Lung-an 
    • 1
  1. 1.Department of MathematicsPeking UniversityBeijingChina

Personalised recommendations