Convergence study for viscous splitting in bounded domains

  • Ying Lung-an 
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1297)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adams, R.A., Sobolev Spaces, Academic Press, New York (1975).MATHGoogle Scholar
  2. [2]
    Alessandrini, G., Douglis, A. and Fabes, E., An approximate layering method for the Navier-Stokes equations in bounded cylinders, Annali di Matematica, 135, (1983), 329–347.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Beale, J.T. and Majda, A., Rate of convergence for viscous splitting of the Navier-Stokes equations, Math. Comp., 31, (1981), 243–259.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Chorin, A.J., Numerical study of slightly viscous flow, J. Fluid Mech., 59, (1973), 785–796.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Chorin, A.J., Vortex sheet approximation of boundary layers, J. Comput. Phys., 27, (1978), 428–442.CrossRefMATHGoogle Scholar
  6. [6]
    Chorin, A.J., Hughes, T.J.R., McCracken, M.F. and Marsden, J.E., Product formulas and numerical algorithms, Comm. Pure Appl. Math., 31, (1978), 205–256.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Fujita, H. and Morimoto, H., On fractional powers of the Stokes operator, Proc. Japan Acad., 46, (1970), 1141–1143.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Ladyzhenskaya, O.A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969).MATHGoogle Scholar
  9. [9]
    Leonard, A., Vortex methods for flow simulation, J. Comput. Phys., 37, (1980), 289–335.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Lions, J.L. and Magenes, E., Nonhomogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin (1972).CrossRefMATHGoogle Scholar
  11. [11]
    Temam, R., On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20, (1975), 32–43.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Teng, Z-H., Elliptic-vortex method for incompressible flow at high Reynolds number, J. Comput. Phys., 46, (1982), 54–68.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Teng, Z.-H., Variable-elliptic-vortex method for incompressible flow simulation, J. Comput. Math., 4 (1986), 255–262.MathSciNetMATHGoogle Scholar
  14. [14]
    Ying, L.-a., The viscosity splitting method in bounded domains, (to appear).Google Scholar
  15. [15]
    Ying, L.-a., The viscosity splitting method for the Navier-Stokes equations in bounded domains, (to appear).Google Scholar
  16. [16]
    Ying, L.-a., On the viscosity splitting method of initial boundary value problems of the Navier-Stokes equations, (to appear).Google Scholar
  17. [17]
    Ying, L.-a., Viscosity splitting method for three dimensional Navier-Stokes equations, (to appear).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Ying Lung-an 
    • 1
  1. 1.Department of MathematicsPeking UniversityBeijingChina

Personalised recommendations