The boundary finite element methods for signorini problems

  • Han Hou-de 
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1297)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Duvaut, G., Lions, J.L., Les inèquations en mècanique et en physique, Dunod, Paris, 1972.MATHGoogle Scholar
  2. [2]
    Glowinski, R., Lions, J.L. and Trèmolières, R., Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.MATHGoogle Scholar
  3. [3]
    Aitchison, J.M., Lacey, A.A. and Shillor, M., A model for an electropaint Process, IMA J. Appl. Math. (1984) 33, pp.17–31.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Glowinski, R., Numerical Methods for Nonlinear variational problems.Google Scholar
  5. [5]
    Brèzis, H., Problèmes unilateraux, J. de Math. Pures et Appliquèes, 51 (1972), pp.1–168.MATHGoogle Scholar
  6. [6]
    Caffarelli, L.A., Further regularity for the Signorini problem, Commun. P.D.E. 4(1979), pp.1067–1076.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Hsiao, G.C., Wendland, W., A finite element method for some integral equations of the first kind, J. Math. Anal. Appl. 58(1977) pp.449–481.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    K. Feng, D.H. Yu, Canonical integral equations of elliptic boundary value problems and their numerical solutions, Proceedings of the China-France Symposium on Finite Element Methods, Beijing, China, 1982.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Han Hou-de 
    • 1
  1. 1.Department of Applied MathematicsTsinghua UniversityBeijingChina

Personalised recommendations