K-Theory, Arithmetic and Geometry pp 42-51

Part of the Lecture Notes in Mathematics book series (LNM, volume 1289)

How to glue perverse sheaves

  • A. A. Beilinson
Chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.Beilinson, On the derived category of perverse sheaves, this volume.Google Scholar
  2. 2.
    J.Bernstein. Algebraic theory of D-modules, to appear.Google Scholar
  3. 3.
    P.Deligne. Letter to Malgrange from 20-12-83.Google Scholar
  4. 4.
    P. Deligne. Théorèmes de finitude en cohomologie 1-adique, Lect. Notes Math. 569, 233–261 (1977)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    M. Kashiwara. Vanishing cycles for holonomic systems, Lect.Notes Math 1016, 134–142 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    R.Macpherson, L.Villonen. Elementary construction of perverse sheaves, Inventiones math. 84Google Scholar
  7. 7.
    B. Malgrange. Polynomes de Bernstein-Sato et cohomologie évanescente. Astérisque 101–102, 243–267 (1983)MathSciNetMATHGoogle Scholar
  8. 8.
    J.-L. Verdier. Extension of a perverse sheaf over a closed subspace. Astérisque 130, 210–217 (1985)MathSciNetMATHGoogle Scholar
  9. 9.
    J.-L. Verdier. Prolongement des faisceaux pervers monodromiques Asterisque 130, 218–236 (1985)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • A. A. Beilinson

There are no affiliations available

Personalised recommendations