Inequalities for the hyperbolic metric and applications to geometric function theory

  • David Minda
Special Year Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1275)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Agard, Distortion theorems for quasiconformal mappings, Ann. Acad, Sci. Fenn. Ser. A I, no. 413 (1968), 12pp.Google Scholar
  2. 2.
    L.V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938), 359–364.MathSciNetMATHGoogle Scholar
  3. 3.
    L.V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.MATHGoogle Scholar
  4. 4.
    B. Flinn, Hyperbolic convexity and level sets of univalent functions, Indiana Univ. Math. J. 32 (1983), 831–841.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    H.W. Guggenheimer, Differential Geometry, McGraw-Hill, New York, 1963.MATHGoogle Scholar
  6. 6.
    J.A. Hempel, The Poincaré metric on the twice punctured plane and the theorems of Landau and Schottky, J. London Math. Soc. (2) 20(1979), 435–445.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    J.A. Jenkins, On explicit bounds in Landau's theorem II, Can. J. Math 33(1981), 559–562.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    V. Jørgensen, On an inequality for the hyperbolic measure and its applications to the theory of functions, Math. Scand. 4(1956), 113–124.MathSciNetMATHGoogle Scholar
  9. 9.
    O. Lehto, K.I. Virtanen and J. Vaisälä, Contributions to the distortion theory of quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I, no. 273(1959), 14 pp.Google Scholar
  10. 10.
    C.D. Minda, Lower bounds for the hyperbolic metric in convex regions, Rocky Mtn. J. Math. 13 (1983), 61–69.MathSciNetCrossRefMATHGoogle Scholar
  11. 11a.
    D. Minda, A reflection principle for the hyperbolic metric and applications to geometric function theory, Complex Variables Theory Appl., to appear.Google Scholar
  12. 11b.
    D. Minda, Applications of hyperbolic convexity to euclidean and spherical convexity, submitted.Google Scholar
  13. 12.
    E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Rational Mech. Anal. 32 (1969), 100–112.MathSciNetCrossRefMATHGoogle Scholar
  14. 13.
    B. Osgood, Some properties of f″/f′ and the Poincaré metric, Indiana Univ. Math. J. 31(1982), 449–461.MathSciNetCrossRefMATHGoogle Scholar
  15. 14.
    Ch. Pommerenke, Estimates for normal meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I, no. 476(1970), 10 pp.Google Scholar
  16. 15.
    Ch. Pommerenke, Normal functions, Proc. NRL Conf. on Classical Function Theory, Math. Res. Center, Naval Res. Lab., Washington, D.C., 1970.Google Scholar
  17. 16.
    A. Weitsman, A symmetry property of the Poincaré metric, Bull. London Math. Soc. 11(1979), 295–299.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • David Minda
    • 1
  1. 1.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiU.S.A.

Personalised recommendations