Möbius invariant spaces of analytic functions

  • J. Arazy
  • S. Fisher
  • J. Peetre
Special Year Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1275)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Anderson, Clunie, and C. Pommerenke, On Bloch functions and normal functions, J. reine angew. Math. 270 (1974), 12–37.MathSciNetMATHGoogle Scholar
  2. 2.
    J. Arazy and S. Fisher, The uniqueness of the Dirichlet space among Mobius invariant Hilbert spaces, Ill. J. Math. 29 (1985), 449–462.MathSciNetMATHGoogle Scholar
  3. 3.
    J. Arazy, S. Fisher, and J. Peetre, Mobius invariant function spaces, J. reine angew. Math., 363, (1986) 110–145.MathSciNetMATHGoogle Scholar
  4. 4.
    J. Arazy, S. Fisher, and J. Peetre, Hankel operators on Bergman spaces, in preparation.Google Scholar
  5. 5.
    S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, preprint.Google Scholar
  6. 6.
    P. Duren, The Theory of Hp Spaces, Academic Press, N.Y., 1970.MATHGoogle Scholar
  7. 7.
    I. Gohberg, and M.G. Krein, Introduction to the Theory of Nonselfadjoint Operators, Transl. Math. Monographs 18, Amer. Math. Soc., Providence, R.I., 1969.MATHGoogle Scholar
  8. 8.
    L.A. Rubel and R.M. Timoney, An extremal property of the Bloch space, Proc. Amer. Math. Soc. 75 (1979), 45–49.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. Arazy
    • 1
    • 2
    • 3
  • S. Fisher
    • 1
    • 2
    • 3
  • J. Peetre
    • 1
    • 2
    • 3
  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael
  2. 2.Department of MathematicsNorthwestern UniversityEvanston
  3. 3.Department of MathematicsUniversity of LundLundSweden

Personalised recommendations